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Background

* Tabular data 1s widely existed in real world

* Survey Data

* Treatment Evaluation in Randomized Trials
* Uplift Model (Improve User Conversion)
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Motivation

* Fact 1: Tabular data 1s often heterogenous.

Why do tree-based models still outperform deep
learning on typical tabular data?

Léo Grinsztajn Edouard Oyallon Gaél Varoquaux

* Fact 2: Neural network often NOT perform well on tabular data.
Q
&’ s

leo.grinsztajn@inria.fr

Nominal Ordinal

While deep learning has enabled tremendous progress on text and image datasets,

its superiority on tabular data is not clear. We contribute extensive benchmarks of

[ J . standard and novel deep learning methods as well as tree-based models such as
XGBoost and Random Forests, across a large number of datasets and hyperparam-

eter combinations. We define a standard set of 45 datasets from varied domains

with clear characteristics of tabular data and a benchmarking methodology account-

ing for both fitting models and finding good hyperparameters. Results show that
tree-based models remain state-of-the-art on medium-sized data (~10K samples)
even without accounting for their superior speed. To understand this gap, we
conduct an empirical investigation into the differing inductive biases of tree-based
models and neural networks. This leads to a series of challenges which should
guide researchers aiming to build tabular-specific neural network: 1. be robust
. to uninformative features, 2. preserve the orientation of the data, and 3. be able
to easily learn irregular functions. To stimulate research on tabular architectures,

Int erV al I z atlo we contribute a standard benchmark and raw data for baselines: every point of a

20 000 compute hours hyperparameter search for each learner.

Heterogeneous Features Deep learning does NOT perform well

Problem: How to address on heterogeneous features effectively?



Related works (unsupervised)

One-hot
SEX Male | Female
Male ||| 0
Female 0 1

Ordinal

Rank-hot
RATE RATE RATE Bad | Neutral | Good
Bad - 0 Bad - 1 0 0
Neutral 1 Neutral 1 1 0
Good 2 Good 1 1 1

Piece-wise linear
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Figure 1. The piecewise linear encoding (P LE) in action, as defined
in Equation 4. In the example, T = 4.




Related works (supervised)

Periodic Target Statistic

fi(r) = Periodic(z) = concat[sin(v), cos(v)],

8
v=[2mcix, ..., 2wepx] ®) . 23;1 H:r_; —zi *¥Yj +ap

where c; are trainable parameters initialized from N (0, o).
o is an important hyperparameter that is tuned using valida-
tion sets.

(1)



Methodology

Idea

A p(xﬁe)s) p(x”) . pas)
1

PUISC ’ p(xMale) p(x( ))
81 ) | el
Age
=54

Instance in Heterogeneous Features Space H Instance in Measurement Occurrence Space S

(xYes A81,Male,54

Feature can be very heterogeneous. We list all potential measurements of an individual
and use the measurement probabilities as new feature space where each axis is a
potential measurement.



p(xé?s) p(x6”) P

1
’ p(xMale) p(x( ))

D
P\Xyes 481 Male,54

Measurement Occurrence Space S

Methodology

Challenge 1: the dimensions of Space S is
combinational.

Solution: We use subspaces S1...., Sm that were
separated by features and concatenate them
together.

Challenge 2: the number of probabilities is
combinational.

Solution: We use zero-order probabilities
p (xf/e)s) p( ) P(x51)s P(Xyrone)s P(xS,) @S
approximation.



Methodology

Encoder of A Trivial MLP Encoder of HetMLP
M) ) — ¥ Learnable Fourier
X, ‘ Learnable Fourier J C Feature
Feature

Weight ]—+
X |$ Xo —’[ Rank-hot Encoder] X |$ X, < s
| Rank-hot Encoder ]—*

Xy —*[ One-hot Encoder ] B /v[ Weight ]—+

%k

\‘[ One-hot Encoder ]—f

Finally, we get a weighted encoder for heterogeneous features where weight is
occurrence’s inverse probability. It can better deal with rare event.




Experiment

Outcome Prediction Task For RCT

» Task Goal
Predict Outcome in Randomized Control
Trial

» Meaning
We can compare the predicted outcome
difference between different treatment for
an individual to decide whether a patient
should accept the treatment.

» Metric
Mean Average Precision for Classification

Assumption: for an individual, if a unbiased model can Mean Squared Error for Regression

predict its factual outcome in RCT better, then it can predict
its counterfactual outcome in RCT better.

Individual Treatment



TABLE IV: Heterogeneous datasets for outcome prediction

Experiment

Our Gathered Dataset

Dataset

Instance

Outcome

Treatment

Safety and Preliminary Efficacy of Intranasal
Insulin for Cognitive Impairment in Parkinson
Disease and Multiple System Atrophy

16

Parkinson disease

Intranasal insulin

https://physionet.org/content/inipdmsa/1.0/

Tai Chi, Physiological Complexity, and Healthy | 60 Gait and EMG data Tai Chi
Aging - Gait

https://physionet.org/content/taichidb/1.0.2/
ECG Effects of Dofetilide, Moxifloxacin, | 22 ECG Dofetilide, Moxifloxacin,
Dofetilide+Mexiletine, Dofetilide+Lidocaine and Dofetilide+Mexiletine,
Moxifloxacin+Diltiazem Dofetilide+Lidocaine and

Moxifloxacin+Diltiazem

https://physionet.org/content/ecgdmmld/1.0.0/

ECG Effects of Ranolazine, Dofetilide, Vera-
pamil, and Quinidine

22

ECG

Ranolazine, Dofetilide, Verapamil,
and Quinidine

https://physionet.org/content/ecgrdvg/1.0.0/

CAST RR Interval Sub-Study Database

734

Cardiac arrhythmia suppression

Encainide, flecainide, moricizine (an-
tiarrhythmic drugs) or a placebo

https://physionet.org/content/crisdb/1.0.0/

Randomized trial of AKI alerts in hospitalized | 6030 Acute Kidney Injury Electronic AKI alert versus usual
patients care
https://datadryad.org/stash/dataset/doi:10.5061%2Fdryad.59zw3r27n
Telerehabilitation program for COVID-19 sur- | 120 Exercise capacity, lower-limb muscle strength | Telerehabilitation  program  for
vivors (TERECO) - Randomized controlled trial (LMS), pulmonary function, health-related qual- | COVID-19 survivors
ity of life (HRQOL), and dyspnoea
https://datadryad.org/stash/dataset/doi:10.5061%2Fdryad.59zw3r27n
Bicycling comfort video experiment 15289 Bicycle rating Video Type
https://datadryad.org/stash/dataset/doi: 10.25338%2FB8KG77
Megafon uplift competition 15 User conversion Exposure
million

https://ods.ai/tracks/df21-megafon/competitions/megafon-df2 1 -comp/data

Infant Health and Development Program

1090

Cognitive development, Behavior problems,
Health status

Home visits, attendance at a special
child development center

https://www.icpsr.umich.edu/web/HMCA/studies/9795

National Supported Work Evaluation Study

6600

effects of the Supported Work Program

Offered a job in supported work

https://www.icpsr.umich.edu/web/ICPSR/studies/7865

CPAP Pressure and Flow Data from a Local Trial
of 30 Adults at the University of Canterbury

30

Breathing

Continuous positive airway pressure

https://physionet.org/content/cpap-data-canterbury/1.0.1/

» Most of those tabular datasets are
heterogeneous features.

» More detail can be seen at:
https://github.com/herdonyan/Ran
domizedTrialDataset



Alert2 AKI Dataset

Experiment

Intervention AKI Alert or Not

Main-outcome | AKI Progression in 14 Days

Pre-treatment | EHR Records

PR-AUC (5 Random Splits)

Patients Num | 6030 in 5 Hospitals (5082/948)

HetMLP Trivial MLP

MLP

Random

21174.0009 | .2087+.0164

SCALE

NUM

Nominal

9

Ordinal

19

Interval

3

Ratio

20

AKI: Acute Kidney Injury

.20094.0329

15681.0089

Our HetMLP got 1.43%
performance up compared with

Trivial MLP.




Will the patients be benefited from the alert?

Splitting 1
Num

Patients Num 3536
Benefited: AKI=12AKI=0 15
Harmful: AKI=0>AKI=1 14

Splitting 3
Num
Patients Num 3504

Benefited: AKI=12AKI=0 26
Harmful: AKI=0>AKI=1 4

Splitting 2
Num
Patients Num 3552

Benefited: AKI=12AKI=0 8
Harmful: AKI=02>AKI=1 2

Splitting 4
Num
Patients Num 3536

Benefited: AKI=12AKI=0 9
Harmful: AKI=0>AKI=1 9



Futural Plan

1. Add more models and datasets for further detailed
comparison 1n experiment

2. Consistency constrain

3. Extend to time-series data



Motivation: Evaluate Individual Treatment Effect
Fundamental Problem: counterfactual 1s unknown

Methodology:

Q 4+ larger

A = MAE of M1 for factual

B = MAE of M1 for counterfactual
C = MAE for M2 for factual

D = MAE for M2 for counterfactual

smaller

M1, M2 factual FIFIIIE TE(RAY, i counterfactual f1) T 2
T, BrE B ZE R M s B oA, MM 3 T
counterfactual '] T 5 ZEAH B factual [P Tl /7 Z= 48K, IIHE
BRI, fEfactual b EARAKMSERIE A DLB2IT 1 2R
BAEBKHITEIRZE,

i, I LLiE I Factual FIMSESRIEASITE.



Individual Treatment Effect Evaluation

'_\.,_‘ ITE is positive. The
- patient should
N accept the treatment.

‘ ITE 1s zero. The

patient should NOT
accept the treatment.

Individual Treatment Outcome o

How to evaluate causal models for ITE estimation task?

Fundamental Problem: only one clinical ending can be measured



Problem Formulation

* Population Evaluation: Given M;: (4,X) = Y, M,: (A4,X) = Y, test
dataset (A,X,Y,F=1) where A 1s randomized, compare
MSE (M(1,X) — M(0,X) — (Y(1) = Y(0))) of M; and M, where
only one of Y;(1), Y;(0) is given.

* Individual Evaluation: Given M;: (4,X) = Y, M,: (4, X) = Y,

individual (1,x,y,F=1) where A is randomized, compare |M(1, x) —
M(0,x) — (y — Y(O))| of M; and M, where Y (0) is not given.




Methodology

* My, M, 1s unbiased on factual dataset and counterfactual dataset

* Factual individual (Y can be measured) and counterfactual individual
(Y can not be measured) with same randomized treatment A follows
identical distribution

* MSE(M,, [F]) < MSE(My, [F]) - MSE(M,, [F, CF]) < MSE(M,, [F,CF])

with high probability (=95%) as n increase n = MSE(M ) n=771f
((W(Mi))z—l)z

ratiois 1.1

e So, we can use MSE on randomized factual data to evaluate ITE



Thanks!



Methodology

| Assumption
4 larger
6 M1, M2 1s unbiased on factual data
G e M1, M2 1s unbiased on counterfactual data
A<C->A+B<(C+D
° aller Errors are both sampling from Gaussian

A = Testing MSE of M1 for factual

B = Testing MSE of M1 for counterfactual
C = Testing MSE for M2 for factual

D = Testing MSE for M2 for counterfactual
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Conclusion
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A = Testing MSE of M1 for factual
B = Testing MSE of M1 for counterfactual

C = Testing MSE for M2 for factual ‘ 2= A= LI
D = Testing MSE for M2 for counterfactual R JJ: g ’ th‘j’::{lj_‘[” fES \7% , A<C :J:ﬁ 1 A+B <
C+DJ& nl eI R 1%
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