
A Measurable Framework for Run-time Data
Sampling in Large-scale Datacenter

Hedong Yan, Shilin Wen, Rui Han*
Department of Computer Science, Beijing institute of technology, Beijing, China

*Email address: hanrui@bit.edu.cn

Abstract—In large-scale data center, collecting run-time
data is a very effective method which can be used to analyze
and monitor the performance of data centers. But due to the
huge size of data centers, limited computing resources and the
requirement of low delay, it is very difficult and unrealistic to
collect all the data in large-scale data centers. Therefore, to
solve the serious problem, sampling partial data from all data
is a common method at present. However, existing researches
only focus on designing some efficient data sampling methods
to reduce resource and time overhead in datacenters, but these
works do not provide a unified and measurable framework to
quantity the quality and practicability of other sampling
methods. In this paper, we propose a measurable framework
for general run-time data sampling in large-scale data center
by modeling underlying recovering hypothesis explicitly. The
proposed framework is mainly composed of four processes:
sampling, collecting, recovering, and comparing. It could
measure sampling bias degree accurately. And we design and
implement three sampling methods with different recovering
hypothesis. The experimental results demonstrate that the
proposed framework can help us find a better run-time data
sampling method effectively which has a lower sampling bias
degree with same sampling rate.

Keywords— large-scale datacenter, run-time data collecting,
measurable framework, sampling bias degree, recovering
hypothesis.

I. INTRODUCTION

Nowadays, monitoring the performance of large-scale
datacenters in real time is vital to ensure more efficient
resource scheduling, workflow scheduling, and PUE (Power
Usage Effectiveness) monitoring [12]. There have been
several studies for monitoring datacenters’ performance
based on run-time data (such as CPU utilization, Memory
utilization and Disk usage, etc.) which can be used to analyze
the state of every mechanical equipment in datacenters [14]
[15] [16]. However, due to huge datacenter scale, limited
computing resources, and the requirement of low delay,
collecting run-time data of all machines or Linux Containers
(Docker [13], etc.) in datacenters is pretty difficult and even
impossible. That is to say, under such strict constraints of the
actual big data scenario [19], how to achieve accurate and
efficient run-time data collection faces with great challenges
in large-scale datacenters.

To address these challenges, sampling partial devices
from all of them becomes an effective approach at present.
The recent work about monitoring the data center [8] used
the compressed sampling that developed basis selection
algorithm and adaptive-rate sampling to detect various
system-level faults. Their previous work [9] is to evaluate the
feasibility of compressed sampling as a monitoring approach
for cloud datacenters. However, their researches only focus
on evaluate compressed sampling methods, not including
other sampling methods and models. Thus, the bottleneck of
human’ fitting ability couldn’t be broken through without
measurements and efficient sampling will hardly be reliable

and practical when datacenter characteristics can’t observed
directly.

It’s necessary to have a good and general measurement if
we want to acquire a better data-driven sampling model
which could learn the characteristics of runtime data to
reduce sampling cost and sampling bias dramatically using
some machine learning or deep learning methods. Therefore,
in this paper, we focus on designing a measurable framework
for general run-time data sampling in large-scale data center.
Our contributions are mainly as follows:

(1) We propose a measurable framework for general run-
time data sampling methods in large-scale data center by
modeling underlying recovery hypothesis explicitly. The
proposed framework is mainly composed of four processes:
sampling, collecting, recovering, and comparing. In the
framework, we can effectively evaluate the biasness of
different run-time data sampling methods, which can help us
find more accurate and efficient sampling methods to collect
data in large-scale data center.

(2) We design and implement three sampling methods
with Neighbor Uniform assumption or Markov assumption
based on Logical clocks. Then we conduct some verification
experiments on Alibaba trace [5]. The experimental results
demonstrate that for different sampling methods and
recovering assumption, we can always obtain sampling bias
degree through our proposed framework. Therefore, which
sampling method is more accurate is clear. Also, it provides
possibility to optimize sampling and recovering model end to
end.

This paper is organized as follows. Section II introduces
some related work about run-time data collecting and
existing data sampling techniques in large-scale data center.
Section III details our proposed framework. In Section IV,
we design and implement three different data sampling
methods. We also show our verification experiments and the
experimental results in section V. Finally, we conclude this
paper and introduce future work in Section VI.

II. BACKGOUND AND RELATED WORK

In this section, we mainly describe the overview of our
related work which consists of the following two parts: run-
time data collecting and some existing data sampling
techniques. They are introduced in details afterwards.

A. Run-time data collecting
In large-scale datacenter, run-time data collecting is not

only a necessary process but also a challenge due to limited
computing resources and the requirement of low delay. [3]
proposes an open-source program which was built by UC
Berkeley to monitor thousands of nodes in data centers or
clusters. Xia, etc. [1] presents μDC2 (unified data collection
for data centers) which includes data sourcing step, data
transfer step and data storage step and devotes to address the
heterogeneous collecting challenge of datacenter and

Authorized licensed use limited to: ShanghaiTech University. Downloaded on November 18,2024 at 04:55:32 UTC from IEEE Xplore. Restrictions apply.

develop a real-time, extensible and scalable data collection
framework. A perspective of Google’s network traffic and
load monitoring system was given in [2]. It avoids sampling
the network traffic by using request/response pairs per type,
which enables intra-application monitoring. And adaptive
sampling was used at full URL and host information to get a
high throughput [2]. However, when they were applied to
large-scale datacenter, it was not enough to reach a real-time
performance of monitoring if sampling techniques were not
used.

B. Data sampling techniques
Sampling techniques often used in many fields, such as

[6] [7] [10]. In large-scale data center, several related
researches have developed different sampling approaches to
overcome the challenge that making a tradeoff between
collecting cost (including gathering cost, transferring cost
and aggregation cost) and collecting bias. Among them, the
most related-works are [8] [9]. [8] evaluates a compressed
sampling method for runtime data monitoring and [9]
develops the idea to adaptive compressed sampling that used
a strategy based on adaptive-rate. The difference between
our work and [8] [9] is that [8] [9] tried to implement
adaptive compressed sampling in datacenter. However, our
framework is not only made it measurable for compressed
sampling, but also for other sampling methods.

III. PROPOSED FRAMEWORK

A. Overview
Run-time data sampling is to choose partial run-time

data samples from population, and those samples should be
representative and unbiased [4]. In this way, we could
monitor the whole datacenter by collecting only a small part
of run-time data. Our goal is to set a flexible framework so
that we could measure general sampling methods’ biasness
accurately. Table I is notations we will used in this paper.

TABLE I. NOTATIONS

Symbols Meaning
C
Pi
Si
Ai
Bi
H

Rc
f0
h
g
r
dc

q

Clocks set in increasing order
Real runtime data population at clock i
Collected runtime data sample at clock i
Sample IDs at clock i
All IDs at clocks i
History table, which records latest runtime
data of every device
Recovered population at clock c
Sampling function without the prior
Collecting function
Excellent reconstruct function
Sampling rate
Discrepancy between real data and recovered
data at clock c
parameter of R3S2 sampling method

The proposed framework could be separated into four
parts as Figure 1: sampling, collecting, recovering, and
comparing. Sampling will select IDs of devices we will
collect in the following procedure. Collecting is a set of
procedures including sending instructions, data gathering,
transferring, and aggregation. Performance of devices will be
collected by IDs in this step. Recovering will try to
reconstruct population by uncompleted data we collected
under certain hypotheses. And comparing is to compare the

discrepancy between recovered population and real
population. The measurement of difference (such as MAD,
RMSE, KL divergence etc.) is often various when we focus
on different things due to all kinds of reason. The final loss
value indicate the sampling bias degree of the sampling
method under certain recovering hypothesis. A definition of
sampling bias degree was given as follow for reference.

 Definition: At a certain time, each individual in
population was allocated to an estimator to predict this
individual’s data by a sampling model and an underlying
recovering model, sampling bias degree of the sampling
model with the underlying recovering model is defined as
discrepancy between those estimators’ expectation and real
data.

Actually, sampling bias degree refers to selection bias
only in this paper, measurement bias which is regarded as
zero by authors will not be discussed here. The sampling bias
degree we defined above indicates sampling method’s ability
to select representative samples to reconstruct population.

In the framework, we can measure the biasness of
sampling methods in a more accurate, intuitive and clarified
way. So we could optimize run-time data sampling model
and explicit hypothesis model in a data-driven approach.
Also we could compare the performance of different run-
time sampling methods for customized datacenters without
direct observation of target datacenters’ characteristics (such
as workflow, network topology [11] [18], and scheduling
mechanism) as Figure 1.

Sampling Collecting Reconstruction

Prior data

SampleID Recovered
Population

Real
Population

Sampling
bias

degree

loss
function

Datacenter
Characteristics

Fig. 1. Proposed framework

B. Prior knowledge and prior data
1) Run-time data sampling and recovering without prior

knowledge and data
Assuming that it is clock c now, f0 is a sampling function

without the prior, mapping from clock c to sample IDs Ai.
And h is a physical and practical function from Ai to Si. It
may include sending introduction to hosts which ID is in Ai,
gathering their data, transferring data to central node and
aggregating the collected data. And g is an excellent
reconstruct function, which means that it can recover run-
time data of all objects completely from partial collected
run-time data. Of course, it seems that an excellent
reconstruct function g is what we want, but we couldn’t
attain both the form and parameters of the function g in
general cases without a prior knowledge and data.

2) Run-time data sampling and recovering with prior
knowledge

Authorized licensed use limited to: ShanghaiTech University. Downloaded on November 18,2024 at 04:55:32 UTC from IEEE Xplore. Restrictions apply.

It is almost impossible to learn the distribution
characteristics of run-time data of the datacenter without any
prior data. So that it is very hard to obtain the most
appropriate run-time data sampling, collecting and
recovering model according to its characteristics. Therefore,
prior data for sampling is necessary to learn the distribution
characteristics of run-time data quickly and easily. However,
how much prior data should be introduced and how to use it
is the key to the problem. The following are some prior
knowledge.

a) Neighbor Uniform assumption
In traditional definition of unbiased sampling,

expectation is often used to judge the unbiasedness of
sampling method, which couldn’t tell the concrete details
between each individual of sample and population
accurately. Although the sampling method is unbiased, it
couldn’t guarantee every sample is unbiased. When
difference of expectation of whole sample and whole
population is chosen as the measurement of how biased the
sampling method is, hidden recovering hypothesis is that
sampling between sample and population is neighbor
uniform. It means that we could recover runtime data by
scaling up sample to the size of population uniformly, which
seems like expansion of balloon. The hypothesis usually
failed in most cases because relation between ID and its
runtime data is complicated. So that sampling bias can’t
represent the true biasness of sampling methods
microscopically. Therefore, sampling methods can’t achieve
representative sample if each sample plays a different role in
population.

b) Markov assumption based on Logical clocks
Considering we have to collect runtime data many times,

each individual (host, VM, container, etc.) in datacenter is
allocated a logical clock. When this individual is being
sampled by central node, its logical clock will move on. And
we assume that each individual is subjected to Markov
assumption in its own logical clocks. It means that we could
predict one device’s current state completely only through
its last state when its logistic clock moves on if we know the
underlying state-change rule. The idea of Markov
assumption based on Logical clocks is that there may not
exist an accurate and synchronized clock for each individual.
Only when these individuals are collected by central node in
datacenter, these individuals should be considered in order
to reduce computing during the interval.

IV. IMPLEMENTATION AND EVALUATION

A. Dataset and preprocess
Cluster-trace-v2017 in Alibaba trace [5] includes run-

time data of Alibaba datacenter about 1300 machines in a
period of 12 hours. The container data we used was collected
by 144 times distributed uniformly in 12 hours. The
timestamps are from 39600 to 82500 and the interval of
neighbor timestamp is 300, which means 5 minutes. The
number of container varies from 10260 to 10358 mostly, and
the number of container was 5563 at two specific timestamp.
In a certain timestamp, IDs of containers is continuous from
1 to more than 10000 mostly, expect for some discontinuities
occasionally. We recommend reader to [17] for more details
about Cluster-trace-v2017.

In order to simplify the collecting problem, we only
chose CPU, memory and disk utilization from all 10

indicators as the performance of containers. And we would
drop containers whose id was greater than 10000, so that
number of containers was no more than 10000 in our
experiments. In fact, number of container is usually smaller
than 10000 and larger than 9000. In the preprocess, we
removed five incomplete container data, whose at least one
indicator of the three was NULL. Especially, if we sampled
an id between 1 to 10000 but there is no runtime data with
regard to the id at this clock, it would be regarded that
runtime data of this container was collected although the
result is NULL. The futile collecting mentioned would
influenced comparison of sampling result merely because
this operation would be applied to all sampling methods.

B. Algorithm design and implementation

1
2
3
4
5
6

9996
9997
9998
9999

10000

6
15
26
47

976
983
997

 6 81%
15 66%
26 41%
47 76%

976 20%
983 49%
997 47%

1 19%
2 76%
3 58%
4 47%
5 66%
6 81%

9996 11%
9997 43%
9998 66%
9999 45%

10000 57%

CollectingSampling Recovering

10,000 ID

1,000 ID 1,000 Data

10,000 Data

ID

ID ID CPU

ID CPU

Fig. 2. An implemented instance of proposed framework without

comparing

An naïve instance of the framework is as Figure 2. Frist
we sample 1000 ID randomly from 10000 containers’ ID,
and then we collect the runtime data with regard to these
1000ID. Then we try to recover runtime data of all 10000
containers under a certain hypothesis. At last, we compare
difference between recovered runtime data of 10000
containers and real runtime data. In this paper, we will
choose MAD (Mean Absolute Derivation), rather than
RMSE (Root Mean Squared error), as measurement of
difference between recovered run-time data and real run-time
data due to computational convenience. Actually, MAD is
often smaller than RMSE.

There are three algorithms we designed to validate the
feasibility of our framework. Algorithm 1 uses simple
random sampling and recovers following Neighbor Uniform
hypothesis. As the simplest case, the uncollected containers’
data will be set to its nearest neighbor by ID. Algorithm 2
applies simple random sampling under Markov hypothesis
based on Logical clocks. As a specific case of this, the run-
time data between adjacent clocks is regarded as unchanged.
Under the same hypothesis with algorithm 2, Algorithm 3
uses repeat-reducing simple random sampling to collect all
containers’ runtime data at once in shorter time. These three
algorithms’ abbreviations are called SRS+NU, SRS+ML
and R3S2+ML in this paper respectively.

Algorithm 1 is an implementation of our framework,
which could measure sampling bias degree of simple
random sampling under neighbor uniform hypothesis. In
this case, the discrepancy computed will tell us how
accurate SRS is, if real run-time data are also collected. First,
m ids were randomly selected from n ids as container ids
that we needed to collect its data. After we collected partial
runtime data, those uncollected containers’ runtime data was

Authorized licensed use limited to: ShanghaiTech University. Downloaded on November 18,2024 at 04:55:32 UTC from IEEE Xplore. Restrictions apply.

regarded as same as its nearest neighbor whose runtime data
had been collected simply. Then we could estimate the
discrepancy between recovered runtime data and real
runtime data of all containers.

The main pseudo code of algorithm 1 at clock c is as
follow. And we will not give specific implementation of
some subfunctions. The readers who are interested in
implementation details of these three algorithms could go to
https://github.com/herdonyan/MeasureSamplingBias for
source codes.

Algorithm 1: Evaluation of simple random sampling under
uniform neighbor hypothesis (SRS+NU)
1. Input: containers’ ID set Bc, real runtime data Pc,

sampling rate r
2. Output: discrepancy dc
3. Ac ∅, Sc ∅, Rc ∅, dc -1
4. Ac SRS (Bc, r)
5. Sc h (Ac)
6. for i in Bc do
7. j i
8. if Sc [i] is null then
9. j FINDNEARSTNEIGHBOR (Ac, i)
10. end if
11. Rc [i] Sc [j]
12. end for
13. dc COMPARE (Rc, Pc)

Different from algorithm 1, the recovering hypothesis of
algorithm 2 is Markov assumption based on Logical clock,
although same sampling methods are used. Algorithm 2 tries
to compute the loss of method SRS+ML. A history table H,
which records and updates the newest run-time data of each
individual, is the key we take advantage of this assumption.
The length of this table is the same as number of containers
and n units of the table are allocated to those n containers
respectively. And when a newer runtime data of the same
container was collected, the older would be replaced by the
newer. The similar mechanism to history table is widely
adopted, such as Cache table in computer operating system,
although for different purposes and with different update
algorithms. Then the recover procedure depends on a history
table H instead of the table of collected partial runtime data
S. The brief pseudo code of SRS+ML is as following.

Algorithm 2: Evaluation of simple random sampling and
Markov assumption based on Logical clocks (SRS+ML)
1. Input: containers’ ID sets Bc, real runtime data Pc,

sampling rate r
2. Output: discrepancies dc
3. Constraint: c belongs to C
4. Ac ∅, Sc ∅, Rc ∅, H ∅, dc -1
5. for c in C do
6. Ac SRS (Bc, r)
7. Sc h (Ac)
8. for i in Ac do
9. H [i] Sc [i]
10. end for
11. for i in Bc do
12. j i
13. if H [i] is null then
14. j FINDNEARSTNEIGHBOR (Ac, i)
15. end if
16. Rc [i] H [j]

17. end for
18. dc COMPARE (Rc, Pc)
19. end for

We noticed that in algorithm 2 the loss at early
timestamp is too large. In order to lower relative error at
start, we tried not to sample same containers many times at
start to collect all containers once at least faster. Here, if
runtime data of an individual was collected this time, it
would not be collected next serval times probably until
almost all containers had been sampled once at least. This
will reduce relative error from 8.9% to 7.1% if sampling rate
is 0.1. And we also believed that if we sampled runtime data
of containers in turn to balance containers’ waiting time to
be collected, the performance of sampling model will
improve. In experiments, it helped us reducing average
sampling bias to 6.4% from 7.1%. Also, we found an
“average trick” that if we use average utilization of the same
container’ runtime data over all past clocks, rather than its
last state only, the relative error computed will reduce from
6.4% to 6.0% when sampling rate is 0.1. Pseudo code of
algorithm 3 is evaluation of R3S2+ML without this trick.

Algorithm 3: Evaluation of Repeat-reducing simple random
sampling and Markov assumption based on Logical clocks
(R3S2+ML)
1. Input: containers’ ID sets Bc, real runtime data Pc,

sampling rate r
2. Output: discrepancies dc
3. Constraint: c belongs to C
4. Ac ∅, Sc ∅, Rc ∅, H ∅, dc -1, q 0.99
5. for c in C do
6. if H.size < Bc.size * q then
7. Lc Bc - H.ids, rl r * (Bc.size/Lc.size)
8. Ac1 ∅
9. if rl > 1 then
10. rh (r * Bc.size - Lc.size)/H.size
11. Ac1 SRS (H, rh)
12. end if
13. Ac2 SRS (Lc, rl)
14. Ac Merge (Ac1, Ac2)
15. else
16. H ∅
17. Ac SRS (Bc, r)
18. end if
19. Sc h (Ac)
20. for i in Ac do
21. H [i] Sc [i]
22. end for
23. for i in Bc do
24. j i
25. if H [i] is null then
26. j FINDNEARSTNEIGHBOR (Ac, i)
27. end if
28. Rc [i] H [j]
29. end for
30. dc COMPARE (Rc, Pc)
31. end for

C. Experimental evaluation
We regard the runtime data of Alibaba Trace[5] as real

population, and we simulate collecting procedure by
selecting some containers’ runtime data as collected sample.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on November 18,2024 at 04:55:32 UTC from IEEE Xplore. Restrictions apply.

Which container should be selected is determined by
sampling methods.

Our machine for experiment is Intel(R) Core(TM) i7-
4790 CPU @3.60GHz, the memory size is 32.0GB, and the
system is Windows 10.

Table II is three different configurations of the
framework and we choose different sampling rate to see the
sampling methods’ performance changing over sample rate.
The number of containers is about 10000, and average CPU,
memory and disk utilization over the 144 timestamps are
9.52%, 44.30% and 14.33% respectively.

In order to show that recovering hypothesis could not be
neglected and it plays a vital role if we want to get lower
sampling bias degree, the comparison between algorithm
SRS+NU and SRS+ML were presented as Figure 3 when
sampling rate is 0.1. When the Neighbor Uniform
hypothesis is extended to Markov assumption with Logical
clock, the relative error is 1/5~1/3 of the former. It shows
the importance of underlying hypothesis of recovering
procedure. So, the sampling bias will be influenced by
underlying recovering hypothesis.

Comparing algorithm 2 and 3, we know that we could
improve the performance of sampling methods by changing
part configuration of this framework. The accuracy of
algorithm 3 improved about 1/3 comparing to algorithm 2.
Finally, relative error of algorithm 3 could reach 6% when
sampling rate is 0.1 using container data of Alibaba Trace.

TABLE II. RELATIVE ERROR IN DATACENTER WITH 10,000
CONTANIERS

Samplin
g rate

Sampling
methods

under
some

hypothese
s

Relative
error of

CPU
utilizatio

n (%)

Relative
error of
Memory
utilizatio

n (%)

Relative
error of

Disk
utilizatio

n (%)

Averag
e

relative
error
(%)

0.1 SRS+NU 39.7 25.8 28.9 31.5
SRS+ML 17.4 4.2 5.2 8.9
R3S2+ML 12.9 2.4 2.7 6.0

0.2 SRS+NU 29.0 13.3 20.0 20.8
SRS+ML 11.2 2.2 2.6 5.3
R3S2+ML 8.8 1.3 1.3 3.8

0.4 SRS+NU 17.1 6.7 8.4 10.7
SRS+ML 6.4 0.9 1.0 2.8
R3S2+ML 5.4 0.6 0.6 2.2

Fig. 3. Relative error of different sampling methods

And we also tested R3S2+ML in different scale
datacenters by using different number of containers of
Alibaba Trace [5]. For example, 1000 containers means that
only containers whose ids are 1~1000 will be considered.
When sampling rate equals 0.1, the result is as Table III and
Figure 4. The scale of datacenter affects the relative error of
this sampling method little. And the biasness of sampling on
CPU utilization is much larger than memory utilization
dramatically. Despite of properties of CPU and memory,
CPU utilization is usually below 10%, which is much smaller.
So, the relative error of CPU utilization may seems higher
than memory utilization if their fluctuations are not very
different.

TABLE III. RELATIVE ERROR OF R3S2+ML IN DIFFERENT SCALE
DATACENTERS

Number of
containers

Relative error
of CPU

utilization (%)

Relative error
of Memory

utilization (%)

Relative error
of Disk

utilization (%)
1000 13.1 2.5 2.8
2000 13.0 2.4 2.7
3000 13.2 2.4 2.8
4000 13.0 2.4 2.8
5000 12.7 2.4 2.6
6000 12.7 2.4 2.7
7000 12.9 2.4 2.7
8000 13.0 2.4 2.7
9000 12.9 2.4 2.8
10000 13.0 2.4 2.7

Fig. 4. Relative error of R3S2+ML in different scale datacenters

V. CONCLUSION
In this paper, we propose a measurable framework for

general run-time data sampling in large-scale data center. By
using our proposed framework, we can effectively evaluate
the quality and practicability of different run-time data
sampling methods in datacenters. And in order to evaluate
the validity of our framework, we design and implement
three sampling methods based on Neighbor Uniform
distribution and Markov assumption based on Logical
clocks. Then we conduct some verification experiments on
Alibaba Trace and the experimental results demonstrate that
for different sampling methods and data population
recovering assumption, we can obtain sampling bias degree
of different sampling methods through our proposed
framework. So, we can obtain a better sampling method
which has a lower sampling bias degree with same sampling
rate.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on November 18,2024 at 04:55:32 UTC from IEEE Xplore. Restrictions apply.

In the future, in order to obtain more accurate and
efficient sampling methods for monitoring the performance
of datacenters, we will focus on the representation and
learning of run-time data sampling and reconstruction model
in large-scale datacenters.

ACKNOWLEDGMENT
This work is supported by the National Natural Science

Foundation of China (Grant No. 61872337). And, thanks for
Zifeng Liu’s useful advices about dataset.

REFERENCES
[1]. Xia W, Wen Y, Xie H, et al. μDC2: unified data collection for data

centers[J]. The Journal of Supercomputing, 2014, 70(3): 1383-1404.
[2]. Ryckbosch F, Polfliet S. Efficient Data Center Monitoring: U.S. Patent

Application 14/492,176[P]. 2015-3-26.
[3]. Massie, M.L., B.N. Chun and D.E. Culler, The ganglia distributed

monitoring system: design, implementation, and experience. Parallel
Computing, 2004. 30(7): p. 817-840.

[4]. Lohr S L. Sampling: design and analysis[M]. Nelson Education, 2009.
[5]. “Alibaba trace,” https://github.com/alibaba/clusterdata, 2017.
[6]. Xu Z, Zhang L, Shen J, et al. MRCS: matrix recovery-based

communication-efficient compressive sampling on temporal-spatial
data of dynamic-scale sparsity in large-scale environmental IoT
networks[J]. EURASIP Journal on Wireless Communications and
Networking, 2019, 2019(1): 18.

[7]. Ramakrishnan S K, Jayaraman D, Grauman K. Emergence of
exploratory look-around behaviors through active observation
completion[J]. Science Robotics, 2019, 4(30): eaaw6326.

[8]. Huang T, Kandasamy N, Sethu H, et al. An efficient strategy for online
performance monitoring of datacenters via adaptive sampling[J].
IEEE Transactions on Cloud Computing, 2016.

[9]. Huang T, Kandasamy N, Sethu H. Evaluating compressive sampling
strategies for performance monitoring of data centers[C]//Proceedings

of the 9th international conference on Autonomic computing. ACM,
2012: 201-210.

[10]. Li Y, Dai W, Zou J, et al. Structured sparse representation with union
of data-driven linear and multilinear subspaces model for compressive
video sampling[J]. IEEE Transactions on Signal Processing, 2017,
65(19): 5062-5077.

[11]. Singh A, Ong J, Agarwal A, et al. Jupiter rising: A decade of clos
topologies and centralized control in Google's datacenter network[J].
ACM SIGCOMM computer communication review, 2015, 45(4):
183-197.

[12]. Barroso L A, Hölzle U. The datacenter as a computer: An introduction
to the design of warehouse-scale machines[J]. Synthesis lectures on
computer architecture, 2009, 4(1): 1-108.

[13]. Anderson C. Docker [software engineering][J]. IEEE Software, 2015,
32(3): 102-c3.

[14]. Mazak A, Lüder A, Wolny S, et al. Model-based generation of run-
time data collection systems exploiting AutomationML[J]. at-
Automatisierungstechnik, 2018, 66(10): 819-833.

[15]. Spinner S, Filieri A, Kounev S, et al. Run-Time Models for Online
Performance and Resource Management in Data Centers[M]. Self-
Aware Computing Systems. Springer, Cham, 2017: 485-505.

[16]. Walter J, Di Marco A, Spinner S, et al. Online learning of run-time
models for performance and resource management in data centers[M].
Self-Aware Computing Systems. Springer, Cham, 2017: 507-528.

[17]. Cheng Y, Anwar A, Duan X. Analyzing Alibaba’s co-located
datacenter workloads[C]//2018 IEEE International Conference on Big
Data (Big Data). IEEE, 2018: 292-297.

[18]. Yantao Sun,Jing Cheng,Konggui Shi, et al. Data Center Network
Architecture[J]. ZTE Communications, 2013, 11(1):54-61.
DOI:10.3969/j.issn.1673-5188.2013.01.010.

[19]. Han R, John L K, Zhan J. Benchmarking big data systems: A
review[J]. IEEE Transactions on Services Computing, 2017, 11(3):
580-597.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on November 18,2024 at 04:55:32 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

