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Abstract—In large-scale data center, collecting run-time 
data is a very effective method which can be used to analyze 
and monitor the performance of data centers. But due to the 
huge size of data centers, limited computing resources and the 
requirement of low delay, it is very difficult and unrealistic to 
collect all the data in large-scale data centers. Therefore, to 
solve the serious problem, sampling partial data from all data 
is a common method at present. However, existing researches
only focus on designing some efficient data sampling methods 
to reduce resource and time overhead in datacenters, but these 
works do not provide a unified and measurable framework to 
quantity the quality and practicability of other sampling 
methods. In this paper, we propose a measurable framework 
for general run-time data sampling in large-scale data center
by modeling underlying recovering hypothesis explicitly. The 
proposed framework is mainly composed of four processes: 
sampling, collecting, recovering, and comparing. It could 
measure sampling bias degree accurately. And we design and 
implement three sampling methods with different recovering 
hypothesis. The experimental results demonstrate that the 
proposed framework can help us find a better run-time data 
sampling method effectively which has a lower sampling bias 
degree with same sampling rate.

Keywords— large-scale datacenter, run-time data collecting,
measurable framework, sampling bias degree, recovering 
hypothesis.

I. INTRODUCTION 

Nowadays, monitoring the performance of large-scale 
datacenters in real time is vital to ensure more efficient 
resource scheduling, workflow scheduling, and PUE (Power 
Usage Effectiveness) monitoring [12]. There have been 
several studies for monitoring datacenters’ performance 
based on run-time data (such as CPU utilization, Memory 
utilization and Disk usage, etc.) which can be used to analyze 
the state of every mechanical equipment in datacenters [14]
[15] [16]. However, due to huge datacenter scale, limited
computing resources, and the requirement of low delay,
collecting run-time data of all machines or Linux Containers
(Docker [13], etc.) in datacenters is pretty difficult and even
impossible. That is to say, under such strict constraints of the
actual big data scenario [19], how to achieve accurate and
efficient run-time data collection faces with great challenges
in large-scale datacenters.

To address these challenges, sampling partial devices
from all of them becomes an effective approach at present.
The recent work about monitoring the data center [8] used 
the compressed sampling that developed basis selection 
algorithm and adaptive-rate sampling to detect various 
system-level faults. Their previous work [9] is to evaluate the 
feasibility of compressed sampling as a monitoring approach 
for cloud datacenters. However, their researches only focus 
on evaluate compressed sampling methods, not including 
other sampling methods and models. Thus, the bottleneck of 
human’ fitting ability couldn’t be broken through without
measurements and efficient sampling will hardly be reliable 

and practical when datacenter characteristics can’t observed
directly.

It’s necessary to have a good and general measurement if 
we want to acquire a better data-driven sampling model
which could learn the characteristics of runtime data to 
reduce sampling cost and sampling bias dramatically using 
some machine learning or deep learning methods. Therefore, 
in this paper, we focus on designing a measurable framework 
for general run-time data sampling in large-scale data center.
Our contributions are mainly as follows:

(1) We propose a measurable framework for general run-
time data sampling methods in large-scale data center by
modeling underlying recovery hypothesis explicitly. The 
proposed framework is mainly composed of four processes: 
sampling, collecting, recovering, and comparing. In the 
framework, we can effectively evaluate the biasness of 
different run-time data sampling methods, which can help us 
find more accurate and efficient sampling methods to collect 
data in large-scale data center.

(2) We design and implement three sampling methods
with Neighbor Uniform assumption or Markov assumption
based on Logical clocks. Then we conduct some verification 
experiments on Alibaba trace [5]. The experimental results 
demonstrate that for different sampling methods and 
recovering assumption, we can always obtain sampling bias 
degree through our proposed framework. Therefore, which
sampling method is more accurate is clear. Also, it provides
possibility to optimize sampling and recovering model end to 
end.

This paper is organized as follows. Section II introduces
some related work about run-time data collecting and 
existing data sampling techniques in large-scale data center.
Section III details our proposed framework. In Section IV,
we design and implement three different data sampling 
methods. We also show our verification experiments and the 
experimental results in section V. Finally, we conclude this 
paper and introduce future work in Section VI.

II. BACKGOUND AND RELATED WORK

In this section, we mainly describe the overview of our 
related work which consists of the following two parts: run-
time data collecting and some existing data sampling 
techniques. They are introduced in details afterwards.

A. Run-time data  collecting
In large-scale datacenter, run-time data collecting is not

only a necessary process but also a challenge due to limited 
computing resources and the requirement of low delay. [3]
proposes an open-source program which was built by UC 
Berkeley to monitor thousands of nodes in data centers or 
clusters. Xia, etc. [1] presents μDC2 (unified data collection 
for data centers) which includes data sourcing step, data 
transfer step and data storage step and devotes to address the 
heterogeneous collecting challenge of datacenter and 
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develop a real-time, extensible and scalable data collection 
framework. A perspective of Google’s network traffic and 
load monitoring system was given in [2]. It avoids sampling 
the network traffic by using request/response pairs per type, 
which enables intra-application monitoring. And adaptive 
sampling was used at full URL and host information to get a 
high throughput [2]. However, when they were applied to 
large-scale datacenter, it was not enough to reach a real-time 
performance of monitoring if sampling techniques were not 
used. 

B. Data sampling techniques 
Sampling techniques often used in many fields, such as 

[6] [7] [10]. In large-scale data center, several related 
researches have developed different sampling approaches to 
overcome the challenge that making a tradeoff between 
collecting cost (including gathering cost, transferring cost 
and aggregation cost) and collecting bias. Among them, the 
most related-works are [8] [9]. [8] evaluates a compressed 
sampling method for runtime data monitoring and [9] 
develops the idea to adaptive compressed sampling that used 
a strategy based on adaptive-rate. The difference between 
our work and [8] [9] is that [8] [9] tried to implement 
adaptive compressed sampling in datacenter. However, our 
framework is not only made it measurable for compressed 
sampling, but also for other sampling methods. 

III. PROPOSED FRAMEWORK 

A. Overview 
Run-time data sampling is to choose partial run-time 

data samples from population, and those samples should be 
representative and unbiased [4]. In this way, we could 
monitor the whole datacenter by collecting only a small part 
of run-time data. Our goal is to set a flexible framework so 
that we could measure general sampling methods’ biasness 
accurately. Table I is notations we will used in this paper. 

TABLE I.  NOTATIONS 

Symbols Meaning 
C 
Pi 
Si 
Ai 
Bi 
H 
 
Rc 
f0 
h 
g 
r 
dc 

 
q 

Clocks set in increasing order 
Real runtime data population at clock i 
Collected runtime data sample at clock i 
Sample IDs at clock i 
All IDs at clocks i 
History table, which records latest runtime 
data of every device 
Recovered population at clock c 
Sampling function without the prior 
Collecting function 
Excellent reconstruct function 
Sampling rate 
Discrepancy between real data and recovered 
data at clock c 
parameter of R3S2 sampling method 

The proposed framework could be separated into four 
parts as Figure 1: sampling, collecting, recovering, and 
comparing. Sampling will select IDs of devices we will 
collect in the following procedure. Collecting is a set of 
procedures including sending instructions, data gathering, 
transferring, and aggregation. Performance of devices will be 
collected by IDs in this step. Recovering will try to 
reconstruct population by uncompleted data we collected 
under certain hypotheses. And comparing is to compare the 

discrepancy between recovered population and real 
population. The measurement of difference (such as MAD, 
RMSE, KL divergence etc.) is often various when we focus 
on different things due to all kinds of reason. The final loss 
value indicate the sampling bias degree of the sampling 
method under certain recovering hypothesis. A definition of 
sampling bias degree was given as follow for reference. 

 Definition: At a certain time, each individual in 
population was allocated to an estimator to predict this 
individual’s data by a sampling model and an underlying 
recovering model, sampling bias degree of the sampling 
model with the underlying recovering model is defined as 
discrepancy between those estimators’ expectation and real 
data. 

Actually, sampling bias degree refers to selection bias 
only in this paper, measurement bias which is regarded as 
zero by authors will not be discussed here. The sampling bias 
degree we defined above indicates sampling method’s ability 
to select representative samples to reconstruct population. 

In the framework, we can measure the biasness of 
sampling methods in a more accurate, intuitive and clarified 
way. So we could optimize run-time data sampling model 
and explicit hypothesis model in a data-driven approach. 
Also we could compare the performance of different run-
time sampling methods for customized datacenters without 
direct observation of target datacenters’ characteristics (such 
as workflow, network topology [11] [18], and scheduling 
mechanism) as Figure 1. 

Sampling Collecting Reconstruction

Prior data

SampleID Recovered 
Population

Real 
Population

Sampling 
bias 

degree

loss 
function

Datacenter 
Characteristics  

Fig. 1. Proposed framework 

B. Prior knowledge and prior data 
1) Run-time data sampling and recovering without prior 

knowledge and data 
Assuming that it is clock c now, f0 is a sampling function 

without the prior, mapping from clock c to sample IDs Ai. 
And h is a physical and practical function from Ai to Si. It 
may include sending introduction to hosts which ID is in Ai, 
gathering their data, transferring data to central node and 
aggregating the collected data. And g is an excellent 
reconstruct function, which means that it can recover run-
time data of all objects completely from partial collected 
run-time data. Of course, it seems that an excellent 
reconstruct function g is what we want, but we couldn’t 
attain both the form and parameters of the function g in 
general cases without a prior knowledge and data. 

2) Run-time data sampling and recovering with prior 
knowledge 
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It is almost impossible to learn the distribution 
characteristics of run-time data of the datacenter without any 
prior data. So that it is very hard to obtain the most 
appropriate run-time data sampling, collecting and 
recovering model according to its characteristics. Therefore, 
prior data for sampling is necessary to learn the distribution 
characteristics of run-time data quickly and easily. However, 
how much prior data should be introduced and how to use it 
is the key to the problem. The following are some prior 
knowledge. 

a) Neighbor Uniform assumption 
In traditional definition of unbiased sampling, 

expectation is often used to judge the unbiasedness of 
sampling method, which couldn’t tell the concrete details 
between each individual of sample and population 
accurately. Although the sampling method is unbiased, it 
couldn’t guarantee every sample is unbiased. When 
difference of expectation of whole sample and whole 
population is chosen as the measurement of how biased the 
sampling method is, hidden recovering hypothesis is that 
sampling between sample and population is neighbor 
uniform. It means that we could recover runtime data by 
scaling up sample to the size of population uniformly, which 
seems like expansion of balloon. The hypothesis usually 
failed in most cases because relation between ID and its 
runtime data is complicated. So that sampling bias can’t 
represent the true biasness of sampling methods 
microscopically. Therefore, sampling methods can’t achieve 
representative sample if each sample plays a different role in 
population. 

b) Markov assumption based on Logical clocks 
Considering we have to collect runtime data many times, 

each individual (host, VM, container, etc.) in datacenter is 
allocated a logical clock. When this individual is being 
sampled by central node, its logical clock will move on. And 
we assume that each individual is subjected to Markov 
assumption in its own logical clocks. It means that we could 
predict one device’s current state completely only through 
its last state when its logistic clock moves on if we know the 
underlying state-change rule. The idea of Markov 
assumption based on Logical clocks is that there may not 
exist an accurate and synchronized clock for each individual. 
Only when these individuals are collected by central node in 
datacenter, these individuals should be considered in order 
to reduce computing during the interval. 

IV. IMPLEMENTATION AND EVALUATION 

A. Dataset and preprocess 
Cluster-trace-v2017 in Alibaba trace [5] includes run-

time data of Alibaba datacenter about 1300 machines in a 
period of 12 hours. The container data we used was collected 
by 144 times distributed uniformly in 12 hours. The 
timestamps are from 39600 to 82500 and the interval of 
neighbor timestamp is 300, which means 5 minutes. The 
number of container varies from 10260 to 10358 mostly, and 
the number of container was 5563 at two specific timestamp. 
In a certain timestamp, IDs of containers is continuous from 
1 to more than 10000 mostly, expect for some discontinuities 
occasionally. We recommend reader to [17] for more details 
about Cluster-trace-v2017. 

In order to simplify the collecting problem, we only 
chose CPU, memory and disk utilization from all 10 

indicators as the performance of containers. And we would 
drop containers whose id was greater than 10000, so that 
number of containers was no more than 10000 in our 
experiments. In fact, number of container is usually smaller 
than 10000 and larger than 9000. In the preprocess, we 
removed five incomplete container data, whose at least one 
indicator of the three was NULL. Especially, if we sampled 
an id between 1 to 10000 but there is no runtime data with 
regard to the id at this clock, it would be regarded that 
runtime data of this container was collected although the 
result is NULL. The futile collecting mentioned would 
influenced comparison of sampling result merely because 
this operation would be applied to all sampling methods. 

B. Algorithm design and implementation 

1
2
3
4
5
6

9996
9997
9998
9999

10000

6
15
26
47

976
983
997

 6 81%
15 66%
26 41%
47 76%

976 20%
983 49%
997 47%

1 19%
2 76%
3 58%
4 47%
5 66%
6 81%

9996 11%
9997 43%
9998 66%
9999 45%

10000 57%

CollectingSampling Recovering

10,000 ID

1,000 ID 1,000 Data

10,000 Data

ID

ID ID CPU

ID CPU

 
Fig. 2. An implemented instance of proposed framework without 

comparing 

An naïve instance of the framework is as Figure 2. Frist 
we sample 1000 ID randomly from 10000 containers’ ID, 
and then we collect the runtime data with regard to these 
1000ID. Then we try to recover runtime data of all 10000 
containers under a certain hypothesis. At last, we compare 
difference between recovered runtime data of 10000 
containers and real runtime data. In this paper, we will 
choose MAD (Mean Absolute Derivation), rather than 
RMSE (Root Mean Squared error), as measurement of 
difference between recovered run-time data and real run-time 
data due to computational convenience. Actually, MAD is 
often smaller than RMSE. 

There are three algorithms we designed to validate the 
feasibility of our framework. Algorithm 1 uses simple 
random sampling and recovers following Neighbor Uniform 
hypothesis. As the simplest case, the uncollected containers’ 
data will be set to its nearest neighbor by ID. Algorithm 2 
applies simple random sampling under Markov hypothesis 
based on Logical clocks. As a specific case of this, the run-
time data between adjacent clocks is regarded as unchanged. 
Under the same hypothesis with algorithm 2, Algorithm 3 
uses repeat-reducing simple random sampling to collect all 
containers’ runtime data at once in shorter time. These three 
algorithms’ abbreviations are called SRS+NU, SRS+ML 
and R3S2+ML in this paper respectively. 

Algorithm 1 is an implementation of our framework, 
which could measure sampling bias degree of simple 
random sampling under neighbor uniform hypothesis. In 
this case, the discrepancy computed will tell us how 
accurate SRS is, if real run-time data are also collected. First, 
m ids were randomly selected from n ids as container ids 
that we needed to collect its data. After we collected partial 
runtime data, those uncollected containers’ runtime data was 
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regarded as same as its nearest neighbor whose runtime data 
had been collected simply. Then we could estimate the 
discrepancy between recovered runtime data and real 
runtime data of all containers. 

The main pseudo code of algorithm 1 at clock c is as 
follow. And we will not give specific implementation of 
some subfunctions. The readers who are interested in 
implementation details of these three algorithms could go to 
https://github.com/herdonyan/MeasureSamplingBias for 
source codes. 

Algorithm 1: Evaluation of simple random sampling under 
uniform neighbor hypothesis (SRS+NU) 
1. Input: containers’ ID set Bc, real runtime data Pc, 

sampling rate r 
2. Output: discrepancy dc 
3. Ac  ∅, Sc  ∅, Rc  ∅, dc  -1 
4. Ac  SRS (Bc, r) 
5. Sc  h (Ac) 
6. for i in Bc do 
7.     j  i 
8.     if Sc [i] is null then 
9.         j  FINDNEARSTNEIGHBOR (Ac, i) 
10.     end if 
11.     Rc [i]  Sc [j] 
12. end for 
13. dc  COMPARE (Rc, Pc) 

Different from algorithm 1, the recovering hypothesis of 
algorithm 2 is Markov assumption based on Logical clock, 
although same sampling methods are used. Algorithm 2 tries 
to compute the loss of method SRS+ML. A history table H, 
which records and updates the newest run-time data of each 
individual, is the key we take advantage of this assumption. 
The length of this table is the same as number of containers 
and n units of the table are allocated to those n containers 
respectively. And when a newer runtime data of the same 
container was collected, the older would be replaced by the 
newer. The similar mechanism to history table is widely 
adopted, such as Cache table in computer operating system, 
although for different purposes and with different update 
algorithms. Then the recover procedure depends on a history 
table H instead of the table of collected partial runtime data 
S. The brief pseudo code of SRS+ML is as following. 

Algorithm 2: Evaluation of simple random sampling and 
Markov assumption based on Logical clocks (SRS+ML) 
1. Input: containers’ ID sets Bc, real runtime data Pc, 

sampling rate r 
2. Output: discrepancies dc 
3. Constraint: c belongs to C 
4. Ac  ∅, Sc  ∅, Rc  ∅, H  ∅, dc  -1 
5. for c in C do 
6.     Ac  SRS (Bc, r) 
7.     Sc  h (Ac) 
8.     for i in Ac do 
9.         H [i]  Sc [i] 
10.     end for 
11.     for i in Bc do 
12.         j  i 
13.         if H [i] is null then 
14.             j  FINDNEARSTNEIGHBOR (Ac, i) 
15.         end if 
16.         Rc [i]  H [j] 

17.     end for 
18.     dc  COMPARE (Rc, Pc) 
19. end for 

We noticed that in algorithm 2 the loss at early 
timestamp is too large. In order to lower relative error at 
start, we tried not to sample same containers many times at 
start to collect all containers once at least faster. Here, if 
runtime data of an individual was collected this time, it 
would not be collected next serval times probably until 
almost all containers had been sampled once at least. This 
will reduce relative error from 8.9% to 7.1% if sampling rate 
is 0.1. And we also believed that if we sampled runtime data 
of containers in turn to balance containers’ waiting time to 
be collected, the performance of sampling model will 
improve. In experiments, it helped us reducing average 
sampling bias to 6.4% from 7.1%. Also, we found an 
“average trick” that if we use average utilization of the same 
container’ runtime data over all past clocks, rather than its 
last state only, the relative error computed will reduce from 
6.4% to 6.0% when sampling rate is 0.1. Pseudo code of 
algorithm 3 is evaluation of R3S2+ML without this trick. 

Algorithm 3: Evaluation of Repeat-reducing simple random 
sampling and Markov assumption based on Logical clocks 
(R3S2+ML) 
1. Input: containers’ ID sets Bc, real runtime data Pc, 

sampling rate r 
2. Output: discrepancies dc 
3. Constraint: c belongs to C 
4. Ac  ∅, Sc  ∅, Rc  ∅, H  ∅, dc  -1, q  0.99 
5. for c in C do 
6.     if H.size < Bc.size * q then 
7.         Lc  Bc - H.ids, rl  r * (Bc.size/Lc.size) 
8.         Ac1  ∅ 
9.         if rl > 1 then 
10.             rh  (r * Bc.size - Lc.size)/H.size 
11.             Ac1  SRS (H, rh) 
12.         end if 
13.         Ac2  SRS (Lc, rl) 
14.         Ac  Merge (Ac1, Ac2) 
15.     else 
16.         H  ∅ 
17.         Ac  SRS (Bc, r) 
18.     end if 
19.     Sc  h (Ac) 
20.     for i in Ac do 
21.         H [i]  Sc [i] 
22.     end for 
23.     for i in Bc do 
24.         j  i 
25.         if H [i] is null then 
26.             j  FINDNEARSTNEIGHBOR (Ac, i) 
27.         end if 
28.         Rc [i]  H [j] 
29.     end for 
30.     dc  COMPARE (Rc, Pc) 
31. end for 

C. Experimental evaluation 
We regard the runtime data of Alibaba Trace[5] as real 

population, and we simulate collecting procedure by 
selecting some containers’ runtime data as collected sample. 
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Which container should  be selected is determined by 
sampling methods. 

Our machine for experiment is Intel(R) Core(TM) i7-
4790 CPU @3.60GHz, the memory size is 32.0GB, and the 
system is Windows 10. 

Table II is three different configurations of the 
framework and we choose different sampling rate to see the 
sampling methods’ performance changing over sample rate. 
The number of containers is about 10000, and average CPU, 
memory and disk utilization over the 144 timestamps are 
9.52%, 44.30% and 14.33% respectively. 

In order to show that recovering hypothesis could not be 
neglected and it plays a vital role if we want to get lower 
sampling bias degree, the comparison between algorithm 
SRS+NU and SRS+ML were presented as Figure 3 when 
sampling rate is 0.1. When the Neighbor Uniform 
hypothesis is extended to Markov assumption with Logical 
clock, the relative error is 1/5~1/3 of the former. It shows 
the importance of underlying hypothesis of recovering 
procedure. So, the sampling bias will be influenced by 
underlying recovering hypothesis.  

Comparing algorithm 2 and 3, we know that we could 
improve the performance of sampling methods by changing 
part configuration of this framework. The accuracy of 
algorithm 3 improved about 1/3 comparing to algorithm 2. 
Finally, relative error of algorithm 3 could reach 6% when 
sampling rate is 0.1 using container data of Alibaba Trace. 

TABLE II.  RELATIVE ERROR IN DATACENTER WITH 10,000 
CONTANIERS 

Samplin
g rate 

Sampling 
methods 

under 
some 

hypothese
s 

Relative 
error of 

CPU 
utilizatio

n (%) 

Relative 
error of 
Memory 
utilizatio

n (%) 

Relative 
error of 

Disk 
utilizatio

n (%) 

Averag
e 

relative 
error 
(%) 

0.1 SRS+NU 39.7 25.8 28.9 31.5 
SRS+ML 17.4 4.2 5.2 8.9 
R3S2+ML 12.9 2.4 2.7 6.0 

0.2 SRS+NU 29.0 13.3 20.0 20.8 
SRS+ML 11.2 2.2 2.6 5.3 
R3S2+ML 8.8 1.3 1.3 3.8 

0.4 SRS+NU 17.1 6.7 8.4 10.7 
SRS+ML 6.4 0.9 1.0 2.8 
R3S2+ML 5.4 0.6 0.6 2.2 

 
Fig. 3. Relative error of different sampling methods 

And we also tested R3S2+ML in different scale 
datacenters by using different number of containers of 
Alibaba Trace [5]. For example, 1000 containers means that 
only containers whose ids are 1~1000 will be considered. 
When sampling rate equals 0.1, the result is as Table III and 
Figure 4. The scale of datacenter affects the relative error of 
this sampling method little. And the biasness of sampling on 
CPU utilization is much larger than memory utilization 
dramatically. Despite of properties of CPU and memory,  
CPU utilization is usually below 10%, which is much smaller. 
So, the relative error of CPU utilization may seems higher 
than memory utilization if their fluctuations are not very 
different. 

TABLE III.  RELATIVE ERROR OF R3S2+ML IN DIFFERENT SCALE 
DATACENTERS 

Number of 
containers 

Relative error 
of CPU 

utilization (%) 

Relative error 
of Memory 

utilization (%) 

Relative error 
of Disk 

utilization (%) 
1000 13.1 2.5 2.8 
2000 13.0 2.4 2.7 
3000 13.2 2.4 2.8 
4000 13.0 2.4 2.8 
5000 12.7 2.4 2.6 
6000 12.7 2.4 2.7 
7000 12.9 2.4 2.7 
8000 13.0 2.4 2.7 
9000 12.9 2.4 2.8 
10000 13.0 2.4 2.7 

 
Fig. 4. Relative error of R3S2+ML in different scale datacenters 

V. CONCLUSION 
In this paper, we propose a measurable framework for 

general run-time data sampling in large-scale data center. By 
using our proposed framework, we can effectively evaluate 
the quality and practicability of different run-time data 
sampling methods in datacenters. And in order to evaluate 
the validity of our framework, we design and implement 
three sampling methods based on Neighbor Uniform 
distribution and Markov assumption based on Logical 
clocks. Then we conduct some verification experiments on 
Alibaba Trace and the experimental results demonstrate that 
for different sampling methods and data population 
recovering assumption, we can obtain sampling bias degree 
of different sampling methods through our proposed 
framework. So, we can obtain a better sampling method 
which has a lower sampling bias degree with same sampling 
rate. 
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In the future, in order to obtain more accurate and 
efficient sampling methods for monitoring the performance 
of datacenters, we will focus on the representation and 
learning of run-time data sampling and reconstruction model 
in large-scale datacenters. 
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