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Abstract
The evaluation of individual treatment effect (ITE) predic-
tion is the most critical challenge for causal learning. The
key issue is that only one potential outcome can be measured
for an individual in reality, even for test data in randomized
trials, since one cannot be treated and untreated simultane-
ously. The evaluation of existing ITE models mainly relies on
synthetic outcomes and nearest neighbor matching. However,
synthetic outcomes cannot be generalized to the real world
well, and the evaluation of matched individuals is also not
trivial. Therefore, it is desired that an evaluation scheme can
directly judge which learned ITE model has a more accurate
prediction for both individuals and population. In this paper,
we propose comparing the ITE prediction error of different
models on real data for both individuals and population. The
ITE model input is pretreatment and treatment, and with the
outcome as the model output, ITE can be calculated by differ-
ence. The outcome prediction error with the same treatment
for factual and counterfactual individuals is independently
distributed on the test dataset. To infer the distribution from
factual data, we also assume that the factual indicators are in-
dependent of potential errors, which can be regarded as satis-
fied when the treatment is a simple randomization. Therefore,
two models with given predicted potential outcomes and fac-
tual dataset can be evaluated by the confidence level that ITE
prediction (mean) square error of one model is smaller than or
equal to the other model for both individuals and population.
Experimental studies show the effectiveness of the proposed
evaluation scheme, and comparisons on a real dataset ALERT
also show improving the model’s performance in individual-
level is more difficult than in population-level.

Introduction
In various real-world scenarios, there exist numerous ap-
plications that require the learning of a model to esti-
mate individual treatment effect (ITE), such as personalized
medicine, user conversion, recommendation system, mar-
keting, and political elections. The most critical challenge of
causal learning is to support the evaluation of research con-
tributions for various causal models based on real scenarios
(Cheng et al. 2022). In this paper, we focus on the fundamen-
tal problem of causal learning evaluation: “It is impossible
to observe the value of Yt(u) and Yc(u) on the same unit,
and therefore it is impossible to observe the effect of t on
u” (Holland 1986). The fundamental problem exists even in
randomized trial data. This raises an important question:

Given two causal models without the counterfactual out-
come on real data, how can we infer which models’ (mean)
square prediction error of ITE is smaller for both the popu-
lation and individuals?

To investigate this question, there are usually two kinds
of model evaluation schemes in existing works: synthetic
outcome and nearest neighbor matching. For example, (Hill
2011) uses linear/exponential Gaussian models as response
surface A/B in Infant Health and Development Program
(IHDP) dataset where models’ parameters are randomly se-
lected. The treatment is intensive high-quality child care
and home visits, and the outcome is synthetic cognitive test
scores. However, the real outcome function can not be ab-
stracted from the real outcome by the evaluation on synthetic
data. Another evaluation method is to use matching to im-
pute counterfactual. The outcome of an individual’s nearest
neighbor in the opposite treatment group was used as a sur-
rogate for the counterfactual outcome. However, the pair can
be misspecified and counterfactual outcome of an individual
may not be in the opposite treatment group sometimes. Also,
the evaluation of nearest neighbor choosing, such as propen-
sity score, is not trivial (Cheng et al. 2022). A specific ex-
ample of matching is the twin data. For example, (Louizos
et al. 2017) uses the mortality of one twin as the counter-
factual mortality of the other twin, and birth weight is re-
garded as treatment. However, birth weight is not random-
ized so bias may exist. Also, the large quantity of treatment
that need to be evaluated and the limited twins number in
reality make the data availability very low. In order to make
the learned causal models can be evaluated by real outcome
so that they can be generalized to real scenes, we need to
discover a new evaluation scheme with weaker assumptions
and realistic data availability.

In this paper, we introduce a new causal model evaluation
scheme which can help to learn and provide causal informa-
tion from real outcome rather than from the function given
by experts. The basic idea is that the outcome prediction er-
rors with the same treatment (which we called potential er-
ror) for the model to be evaluated are independent identically
distributed on the test dataset as shown in figure 1. The po-
tential error distribution can be inferred from the observed
sample if the treatment is randomized. We propose a Monte
Carlo algorithm to calculate the confidence for arbitrary po-
tential error distribution, such as histogram distribution. Fi-
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(0)) respectively.

nally, the probability that one model’s ITE (mean) square
prediction error is smaller than or equal to the other can be
calculated from real data for all individuals and populations.

Furthermore, we propose a metric that was called popu-
larity of causal model based on the individuals’ confidence
difference of the two models, and we use average popularity
on different classes in addressing the imbalanced outcome
in the classification task.

The evaluation scheme bridges the gap between factual
prediction and ITE prediction in causal learning. Our eval-
uation scheme does not require the models that need to be
compared to have the same input format and counterfactual
forms but it relies on the efficient inference of potential error
distribution.

Our contribution can be concluded as follows,
• We propose a novel evaluation architecture for general

causal models from both population-level and individual-
level on real data where counterfactual is unknown. The
potential errors with the same potential treatment are as-
sumed as independently identical distributed conditional
on the given model.

• We analyze the potential error with Gaussian distribu-
tion for continuous outcome and propose a Monte Carlo
algorithm for arbitrary potential error distributions. The
factual indicator is assumed to be independent from po-
tential error to make the potential error distribution can
be inferred directly from the factual errors. The assump-
tion can be regarded as satisfied if the binary treatment is
from simple randomization.

• We perform experiments for three classic models on the
dataset ALERT with real outcomes. The experimental
results show that CatBoost and Linear/Logistic models
are significantly better than average/stochastic for ITE

prediction in population-level and CatBoost performs
better than others in individual-level although the pop-
ularity/prestige difference between CatBoost and Lin-
ear/Logistic is not significant.

Related works
ITE evaluation
The ITE evaluation approaches for causal models can be
divided into two categories: individual matching, and syn-
thetic outcome.

Individual matching is to find a factual outcome in an
individual’s opposite treatment group as the individual’s
counterfactual outcome. The key to the matching approach
is the evaluation of the matching function. For example,
BLR/BLN (Johansson, Shalit, and Sontag 2016) uses the
outcome of the nearest neighbor of pretreatment to impute
counterfactual data which is difficult to evaluate. A specific
example is twin data. (Louizos et al. 2017) uses one twin’s
factual outcome as the other twin’s counterfactual outcome
despite of the low data availability.

Synthetic outcome is to assign a known function with ran-
dom parameters which input is pretreatment and treatment,
and output is the outcome. (Hill 2011) use two linear/logistic
Gaussian models to generate potential outcomes by pretreat-
ment and treatment. (Johansson, Shalit, and Sontag 2016)
uses two linear Gaussian models to generate readers’ expe-
rience from the hidden topic distribution Z of consumers’
features X and the viewing device is generated by a soft-
max function from the hidden topic. However, the learned
model’s performance can not be generalized to real world
well because the outcome function is what we want to learn
from the real world data in causal learning. And if we know



well about the outcome, then the treatment effect can be in-
duced directly by the given outcome function, there is no
need to learn from the data.

There are also some other works of ITE evaluation for
causal models. For example, uplift curve and Qini curve
were often used for evaluation in uplift task (Gutierrez and
Gérardy 2017). (Shalit, Johansson, and Sontag 2017) use
the unemployment prediction performance in random tri-
als as a metric of the causal model’s performance. Recently,
(Gentzel, Pruthi, and Jensen 2021) uses OSRCT data to pre-
dict individual-level outcomes under intervention but it can
not be used to evaluate ITE prediction performance. Also,
they did not reveal the connection between factual predic-
tion and ITE prediction.

Causal models
The causal models are used to estimate the treatment effect,
especially for individuals. For example, treatment agnostic
representation network (TARNet) (Shalit, Johansson, and
Sontag 2017) uses twin neural networks with different pa-
rameters to model the treated and control outcomes, respec-
tively. CEVAE (Louizos et al. 2017) uses a non-parametric
causal diagram prior to factorizing the causal effect into ob-
servation probability. CatBoost (Prokhorenkova et al. 2018)
is one of state-of-the-art tree models for heterogeneous tab-
ular dataset, which supports categorical and continuous fea-
tures, especially for click rate prediction, and uplift model-
ing.

Notation and problem
Notation
For an individual i in the test dataset Dte, Xi =
(Xi

ob, X
i
u) is the pretreatment where Xi

ob is observed and
Xi

u is unobserved, Y i
ob is observed/measured/factual out-

come, Ai is assignment of treatment, and Yu is the unmea-
sured/counterfactual outcome. M is a model which input
is treatment assignment A and features X , output is de-
noted as Y . The potential outcome and potential error con-
ditional on model M for individual i are denoted as Y i

M (A)
and εiM (A) where one of Y i

M (A) or εiM (A) is the factual
outcome or factual error and others are counterfactual out-
comes or counterfactual errors. And, Xi, Xi

ob, Xi
u, Y i

ob, Ai,
Y i
M (A), εiM (A) are all random variables. The treatment as-

signment A is binary in this paper.

Problem Description
Given two learned models M1(A,X1) and M2(A,X2) that
need to be evaluated where features X1 ⊆ X and fea-
tures X2 ⊆ X , the target in individual level is to compare
the square prediction error of ITE for M1 and M2, that is,
whether (M1(1, X

i
1)−M1(0, X

i
1)− (Y i

M1
(1)− Y i

M1
(0)))2

is smaller or equal to (M2(1, X
i
2)−M2(0, X

i
2)−(Y i

M2
(1)−

Y i
M2

(0)))2. The target in population level is to compare
mean squared prediction error of ITE for M1 and M2, that
is, whether 1

n

∑n
i=1(M1(1, X

i
1)−M1(0, X

i
1)− (Y i

M1
(1)−

Y i
M1

(0)))2 is smaller or equal to 1
n

∑n
i=1(M2(1, X

i
2) −

M2(0, X
i
2)− (Y i

M2
(1)−Y i

M2
(0)))2. The fundamental prob-

lem of the evaluation is that only one of the two potential
outcomes (Y i

M (1), Y i
M (0)) can be measured even in a test

dataset and randomized trial. Here, we assume that the mea-
sured potential outcome Y i

ob of any individual i is indepen-
dent from any given model M .

Methodology
Our evaluation scheme is as shown in figure 2. It is com-
posed by two assumptions (gray), potential error inference
(orange), and confidence calculation (yellow). We will first
introduce the confidence calculation module, and then illus-
trate the potential error inference module. The ITE evalua-
tion metric is introduced in the experiment section.
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Figure 2: Proposed evaluation scheme.

Causal Model Evaluation by Potential Error
Distribution
In this section, we demonstrate our scheme to deal with the
fundamental problem in evaluation. The core idea of our so-
lution is that the prediction error of potential outcome with
the same treatment for any model to be evaluated is inde-
pendent identically distributed on the test dataset as shown
in figure 1.

For a model to be evaluated, if the potential error is not
independently identical distributed on the test dataset, then
some error patterns and structures that should be incorpo-
rated into the model may not be considered. Ignoring the
presence of non-i.i.d. errors can lead to biased model esti-
mates, and unreliable predictions.

Here is the formal statement of our i.i.d. potential error
assumption,

Assumption 1 For any model M to be evaluated, any indi-
vidual i in the test dataset Dte, and any potential treatment
a in the range of Ai for individual i, we have εiM (a)

i.i.d.∼



F(a,M,Dte), where F represents the underlying probabil-
ity distribution function governing the outcome prediction
errors which is determined by potential treatment a, model
to be evaluated M , and population Dte in the test dataset.

The i.i.d. potential error assumption gives the generaliza-
tion condition of evaluation results based on the given mod-
els and real data in the test dataset. The inference of the
distribution F from factual dataset Dte = {Ai

ob, X
i
ob, Y

i
ob}i

will be introduced in the next subsection where Ai
ob is the

factual treatment for individual i. We introduce our approach
to evaluate the individual-level error of ITE and population-
level of ITE in this subsection.

Evaluate Causal Models for Individual For an individ-
ual i, the question of interest is whether the absolute error
of ITE prediction for model M1 is lower than or equal to
M2 for an individual i. Given the potential error distribu-
tions (εM1

(Ai
u), εM1

(Ai
u)), model pair (M1,M2), and fac-

tual dataset Dte where Ai
u is counterfactual treatment for the

individual i, the probability can be calculated absolutely.
Here, theorem 1 demonstrates the specific case when the

potential error distributions (εM1(A
i
u),εM2(A

i
u)) are both

Gaussian distributions.

Theorem 1 Without loss of generality, let the factual treat-
ment Ai

ob = 1 for an individual i. Given the individual’s
pretreatment Xi

ob and its factual outcome Y i
ob = Y i(1), and

given two models Y = M1(A,X1) and Y = M2(A,X2)
to be evaluated, the probability that square ITE prediction
error of model M1 is smaller than or equal to model M2,
can be represented as a cumulative distribution function of
a generalized non-central chi-squared distribution Fx(x =
0; χ̃2(w,k,λ, 0, 0)) where w =

[
σ2
1 ,−σ2

2

]
, k = [1, 1], and

λ =
[
(
ϵiM1

(1)−µ1

σ1
)2, (

ϵiM2
(1)−µ2

σ2
)2
]

if potential error dis-

tributions εiM1
(0) and εiM2

(0) follow Gaussian distribution
N(µ1, σ1) and N(µ2, σ2), and ϵiM1

(1), ϵiM2
(1) are factual

prediction errors.

Evaluate Causal Models for Population For a popula-
tion Dte, the question of interest is whether the mean square
error of the ITE prediction for model M1 is lower than or
equal to the model M2. Given the potential error distribu-
tions (εM1

(Ai
u), εM1

(Ai
u)) for all individuals i, model pair

(M1,M2), and factual dataset Dte where Ai
u is the coun-

terfactual treatment for individual i, the probability is abso-
lutely can be calculated.

Here, theorem 2 demonstrates the specific case when the
potential error distributions for all individuals are all Gaus-
sian distributions.

Theorem 2 Given a factual test dataset Dte =
(Xi

ob, A
i
ob, Y

i
ob)

i, and given two models Y = M1(A,X1)
and Y = M2(A,X2) to be evaluated, the proba-
bility that mean square ITE prediction error of the
model M1 is smaller than or equal to the model
M2 can be represented as a cumulative distribution
function of a generalized non-central chi-squared dis-
tribution Fx(x = 0; χ̃2(w,k,λ, 0, 0)) where w =

[
σ2
10..σ

2
10︸ ︷︷ ︸

n1

, σ2
11..σ

2
11︸ ︷︷ ︸

n0

,−σ2
20..− σ2

20︸ ︷︷ ︸
n1

,−σ2
21..− σ2

21︸ ︷︷ ︸
n0

]
1∗2n

,

k = [1, ...1]
1∗2n, λ = [λ11,λ10,λ21,λ20]1∗2n,

and λ11 =
[
(
u10−ϵ1M1

(1)

σ10
)2..(

u10−ϵ
n1
M1

(1)

σ10
)2
]
1∗n1

,

λ10 =
[
(
u11−ϵ

n1+1

M2
(0)

σ11
)2..(

u11−ϵnM2
(0)

σ11
)2
]
1∗n0

,

λ21 =
[
(
u20−ϵ1M2

(1)

σ20
)2..(

u20−ϵ
n1
M2

(1)

σ20
)2
]
1∗n1

,

λ20 =
[
(
u21−ϵ

n1+1

M2
(0)

σ21
)2..(

u21−ϵnM2
(0)

σ21
)2
]
1∗n0

if poten-

tial error distribution εM1
(1), εM2

(1), εM1
(0), εM2

(0)
follow Gaussian distribution N(µ11, σ11), N(µ21, σ21),
N(µ10, σ10), N(µ20, σ20), and ϵiM1

(Ai
ob), ϵiM1

(Ai
ob) are

factual prediction errors.

The numerical solution of the cumulative distribution
function (CDF) for generalized non-central chi-square dis-
tribution (Davies 1980) (Davies 1973) can be calculated in
python (Danilo Horta 2020).

Evaluate Casual model with Arbitrary Potential Error
Distributions In addressing arbitrary potential error dis-
tributions, we propose a Monte Carlo algorithm to calcu-
late the individuals’ confidences Cj that square error of ITE
prediction for model M1 is smaller or equal to model M2,
and population confidence p that mean square error of ITE
prediction model M1 is smaller or equal to model M2 as
showed in algorithm 1.

Evaluate Causal Models for Outcome Classification
For binary classification, the potential error distribution of
outcome is not a continuous random variable but a discrete
random variable with range [−1, 0, 1]. The distance between
the prediction score and factual prediction is not included.
Our evaluation for outcome classification is based on the
potential error distribution of the probability score. The his-
togram distribution with range [−1, 1] is applied in our eval-
uation for the classification task.

Infer Potential Error Distribution from Factual
Data
If potential error distributions εiM (A) were given, the confi-
dence of model evaluation can be calculated by the approach
in the last subsection. However, we only have an observed
sample of the potential error distribution due to unmeasured
counterfactual error which is introduced by the fundamental
problem of causal learning. The question is how to infer the
potential error distribution from the observed sample.

First, we demonstrate the measurement process of the ob-
served sample from the population by a factual indicator I,

Definition 1 Factual Indicator I. For a given model Y =
M(A,X) and a given population Dte(A) with mixed fac-
tual and counterfactual individuals for all potential treat-
ments, a factual indicator IiM (A) is a random variable
whose input is an individual i with potential error ϵiM (A)
and output is a binary value to represent whether the poten-
tial error ϵiM (A) of this individual i is a factual error.



Algorithm 1: Proposed Monte Carlo algorithm to
calculate individual and population confidence for
models’ evaluation

input : potential error distributions εM1(1), εM1(0),
εM2(1), εM2(0), factual errors ϵiM1

(Ai
ob),

ϵiM2
(Ai

ob), individual number N , sampling
number M , treatment number K = 2,
factual indicator I

output: Individual confidences C, population
confidence p

1 np = 0

2 nj
c ← 0

3 for i← 1 to M do
4 pt = 0
5 for j ← 1 to N do
6 nc = 0
7 for k ← 1 to K do
8 if Ii(k) = 0 then
9 ϵiM1

(k) ∼ εM1(k)
10 end
11 end
12 t← (ϵiM1

(1)−ϵiM1
(0))2−(ϵiM2

(1)−ϵiM2
(0))2

13 pt ← pt + t
14 if t ≤ 0 then
15 nj

c+ = 1
16 end
17 end
18 if pt ≤ 0 then
19 np+ = 1
20 end
21 end
22 p← np

M
23 for j ← 1 to N do
24 Cj ← nj

c

M
25 end

We discuss the potential errors’ inference in the test
dataset with randomized treatment and non-randomized
treatment separately.

Randomized treatment In a classical randomized exper-
iment, the treatment assignment is a known function Pr(A)
which is probabilistic, individualistic, and uncounfounded
(Imbens and Rubin 2015). We let the treatment assignment
be a simple randomization Pr(A) = 0.5 for binary treat-
ment without loss of generality.

Similar to uncounfounded assumption which assumes
treatment assignment Ai is independent from potential out-
comes (Y i(1), Y i(0)), we assume that factual indicator
IiM (A) is independent from potential errors εiM (A) for any
potential value of A,

Assumption 2 For any individual i (including factual and
counterfactual individual) in population Dte(a) and any
model M to be evaluated, we have IiM (a)⊥εiM (a) for any
a ∈ Range(A).

We should ensure the assumption is satisfied before the
test dataset was collected. Here is an illustration of assump-
tion 2 when observed treatment Ai

ob is randomized. Let
IiM (1) = Ai

ob and IiM (0) = 1 − Ai
ob, because the Ai

ob is
randomized, and the model M is fixed before the testing,
and IiM (A) is a one-to-one function of A, so the IiM (1) and
IiM (0) can also be regraded as randomized. If assumption 2
holds, then we can infer the potential error distributions from
the observed sample directly if the treatment is randomized
as the following theorem,

Theorem 3 For a given model M to be evaluated, and any
individual i, if IiM (a)⊥εiM (a) for any a ∈ Range(A), then
Pr(εiM (a)) = Pr(εiM (a)|IiM (a) = 1).

For example, given a random sample [1, 0, 0, 1] of treat-
ment assignment Pr(A) from the population, it is also a ran-
dom sample [1, 0, 0, 1] of factual indicator IiM (1) and a ran-
dom sample [0, 1, 1, 0] of factual indicator IiM (0). Accord-
ing to theorem 3, we can infer the potential error distribution
εiM (1) = N(µ1, σ1) and εiM (0) = N(µ0, σ0) from the
observed errors where µ1 = 1

n1

∑n1

i=1 M(1, Xi)− Y i
M (1),

σ1 = 1
n1−1

∑n1

i=1(M(1, Xi) − Y i
M (1) − µ1)

2,
and µ0 = 1

n0

∑n0

i=1 M(0, Xi)− Y i
M (0), σ0 =

1
n0−1

∑n0

i=1(M(0, Xi) − Y i
M (0) − µ0)

2 where n0 and
n1 are the number of factual individuals with Ai = 0 and
Ai = 1 respectively. For histogram distributions, we use
frequency with max(

√
nte, 100) bins with range [−1, 1] to

infer them.

Non-randomized treatment In observation study, treat-
ment assignment Pr(A) is not known (Imbens and Rubin
2015), so the factual indicator IiM (A) is difficult to choose
to satisfy the assumption 2. So, we can not directly infer the
potential error from the observed error. (Rosenbaum and Ru-
bin 2023) illustrates some principles for observation study
design.

Experiment
In this section, we describe the evaluation result of our
scheme for some existing models’ ITE prediction perfor-
mance on a randomized dataset ALERT with real outcomes.
We use the confidence table of model matches to demon-
strate the ITE prediction performance of matched models for
the population. And we use individuals’ confidence distribu-
tion about the model matches to visualize the ITE prediction
performance of matched models for individuals.

Dataset
We use a heterogeneous tabular dataset ALERT for causal
models’ evaluation, which is introduced in (Gentzel, Pruthi,
and Jensen 2021) for observational causal inference. The
reason to use the ALERT is that it is derived from a double-
blinded, multi-center, and parallel designed randomized trial
that recorded electronic health record (EHR) data of pa-
tients (Wilson et al. 2021). The trial used simple randomiza-
tion to evaluate the impact of an acute kidney injury (AKI)
alert caused by the electronic system compared to usual care
without an alert. So the assumption 2 can be reasonable.



The dataset comprises a total of 6,030 adult inpatients
with AKI. It includes 49 pretreatments, 1 treatment, and 42
posttreatments. Among the 49 pretreatments, there are 28
discrete features and 23 continuous features. Within the co-
hort of 6,030 patients, 948 patients experienced AKI pro-
gression within a 14-day period, while 5,082 patients did
not exhibit such progression.

In the prepossessing, we remove the individuals whose
pretreatment includes at least a NAN value. After prepro-
cessing, there are 5347 patients in which 4470 AKI progres-
sion after the alert and 877 did not exhibit such progression.

The interested task in the ALERT dataset is to predict the
individual treatment effect of alert based on the available
pretreatment variables. For the classification task, we choose
AKI progression within 14 days as the outcome. For the re-
gression task, we choose minimum systolic after 24 hours of
alert as the outcome.

Implementation Details
To quantify the influence of dataset splitting randomness on
models, all experiments were conducted

√
n times using dif-

ferent random splits of the dataset where n is the number of
individuals. Train/test splitting ratio is 8:2.

We evaluated three models for the regression task: aver-
age, linear model and CatBoostRegression (Prokhorenkova
et al. 2018), and we evaluated three models for the classi-
fication task: stochastic, logistic regression, and CatBoost-
Classifier.

Regression: ITE from alert to minimum systolic
Model Learning and Potential Error Distribution Infer-
ence The model learning details for both the regression
model and the classification model can be seen in the ap-
pendix. For continuous outcome, we use Q-Q (quantile-
quantile) plot to check the Gaussian assumption of potential
error, and we did not check the histogram assumption for
discrete outcome. The detail of Q-Q plot can also be seen in
the appendix.

Confidence Visualization In order to evaluate the models
in both individual level and population level, we use differ-
ent metrics.
• Population Level. Table 1 shows the population confi-

dence of matched models for regression and classifica-
tion, respectively. We can see that the linear and CatBoost
are significantly more accurate than the average predic-
tion. But the advantage of CatBoost compared with linear
is not significant.

• Individual Level. In reality, the prediction MSE of ITE
in the population level is usually not sufficient for trust-
worthy models. Figure 3 shows the individuals’ confi-
dence distribution for matched models.
We create a metric ρ based on the individuals’ confi-
dence distribution to measure the popularity/prestige of
the model M1 comparing with a reference model M0

which can be calculated by the following formula,

ρ =
2card(p(|eiM1

| ≤ |eiM0
|) > 0.5)

n
− 1 ∈ [−1, 1]

(1)

where n is individual number and ρ is the normalized dif-
ference between vote number of model M1 and the ref-
erence model M0. Table 2 shows the popularity among
the three models. Linear model and CatBoost are sig-
nificantly more accurate than the average model in the
population-level. In the individual-level, the incremental
individual vote is only about 75% with an average model
as a reference. The difference between the linear model
and CatBoost is also not significant at individual-level.
Figure 3 shows the detailed individuals’ confidence dis-
tributions.

p(MSEr ≤MSEb) Linear CatBoost
Average 1.0 1.0
Linear 1 .594± .135

Table 1: Population confidence when the outcome is mini-
mum systolic. r: right; b: bottom.

ρ(Mr;Mb) Linear CatBoost
Average .751± .024 .749± .029
Linear 0 .080± .113

Table 2: Popularity among matched models at individual-
level when outcome is minimum systolic. r: right; b: bottom.

Classification: ITE from Alert to AKI progress
Confidence Visualization The histogram distribution
does not have good forms as Gaussian. We use algorithm
1 to generate 1k random samples for all individuals in the
test dataset to calculate the population-level confidence and
individual-level confidence of matched models.
• Population Level. In addressing the imbalanced classes,

the ITE difference between prediction and sampled real
value is re-weighted by individual’s classes, the line 13
in algorithm 1 was replaced by the following,

pt ← pt +
t

nY=yj

(2)

Table 3 shows the balanced population confidence of
matched models. The Logistic and CatBoost are signif-
icantly more accurate than stochastic, and CatBoost is
significantly more accurate than the Logistic.

• Individual Level. In addressing the imbalanced classes,
we use average popularity for different classes of the out-
come,

ρ =
1

K

K∑
c=1

ρc ∈ [−1, 1] (3)

where K is the class number of the outcome and ρc is
the popularity for individuals whose Yob = c. Table 4
shows the balanced popularity among the three models.
The incremental individual votes of CatBoost comparing
Stochastic is statistically significantly increased by a 5%
level of confidence. Figure 4 shows the detailed individ-
ual confidence distribution for matched models.



(a) Catboost vs Average (b) Catboost vs Linear (c) Linear vs Average

Figure 3: Individual confidence distribution p(|ϵiM1
| < |ϵiM0

|) for regression task. When p is larger than 0.5, it means the left
model is more accurate than the right model for this individual. The x-axis is individual confidence, the y-axis is the individual
density.

(a) Catboost vs Stochastic (b) Catboost vs Logistic (c) Logistic vs Stochastic

Figure 4: Individual confidence distribution p(|eiM1
| ≤ |eiM0

|) for classification task. When p is larger than 0.5, it means the left
model is more accurate than the right model for this individual. The x-axis is individual confidence, the y-axis is the individual
density. The individual number has been re-weighted by inverse of class numbers.

p(MSEr ≤MSEb) Logistic CatBoost
Stochastic .998± .003 .999± .001
Logistic 1 .924± .060

Table 3: Population confidence when the outcome is AKI
progression in 14 days. r: right; b: bottom.

ρ(Mr;Mb) Logistic CatBoost
Stochastic .025± .009 .032± .008
Logistic 0 .039± .025

Table 4: Popularity among matched models at the individual
level when the outcome is AKI progression in 14 days. r:
right; b: bottom.

Conclusion
In this paper, we introduced a novel evaluation scheme of
ITE prediction for general causal models based on real out-
come. It can judge which model learns more causal informa-
tion from the real outcome. Our framework is based on two
assumptions: potential errors are independently identically
distributed, and factual indicators are independent from the
potential errors. We analyze potential error with Gaussian

and propose a Monte Carlo method for arbitrary distribu-
tions. We performed experiments on a real dataset ALERT
for some existing models from both individual-level and
population-level. Our work bridges factual prediction and
ITE prediction.

There are also some limits of our work. First, observed
errors with the same treatment can be seen as a random
sample when the treatment assignment is from simple ran-
domization. However, it may not be in observation data so
we can not infer the error distribution from observed er-
rors directly. Second, although the Monte Carlo method can
be used for arbitrary potential error distributions, more effi-
cient algorithms are needed to accelerate the computation of
matched causal model’s confidence score. Third, for a new
individual that is a uniform sampling from the same super-
population but not in the test dataset, our evaluation always
gives the same confidence for two models. A more individ-
ualized confidence calculation approach is needed, such as
nearest neighbor matching of predicted ITE.
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