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Background

* Heterogeneous data widely exists in reality, such as user information, EHR,
and surveys.

* Heterogeneous data 1s critical for many tasks in the real world.
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Problem

raditional deep learning models for homogeneous features can not be
irectly applied to heterogeneous data. Not much attention has been pai
o describing how DNN can be designed for heterogeneous datasets.

Hello, here is some text without a meaning. This text should show
what a printed text will look like at this place. If you read this text
you will get no information. Really? Is there no information? Is there
a difference between this text and some nonsense like “Huardest gef-
burn”? Kiift -~ ot at all! A blind text like this gives you information
abont the selected font, how the letters are written and an impression
of the look. This text should contain all letters of the alphabet and
it should b written in of the original language. There is no need for
special content, but the length of words should match the language.

Hello, here is some text without a meaning. This text should show
what a printed text will look like at this place. If you read this text,
you will get no information. Really? Is there no information? Is there
difference between this text and some nor

Kjift - not at all! A blind text like this giv
selected font, how the letts
This text should c
written in of the ori

ense like “Huardest gefburn
you information about the

s are written and an impression of ¢
ontain all letters of the

Interval Ratio

Video

Voice Heterogeneous Features

Homogeneous Features



Related works

Feature Scale | Encoder Input Output
Nominal One-hot [1,2,3] [[1,0,0],[0,1,0],[0,0,1]]
Binary [1,2,3] [[0,0],[0,1],[1,01]]
Dumpy [1,2,3] [[1,0],[0,1],[0,01]]
Count [1,1,3] [[2], [2] [1]]
Simple [1,23] T A L N |
Ordinal Ordinal [1,2,3] [1,2,3]
Rank-hot [1,2,3] [[1,0,0],[1,1,0],[1,1,1]]
Gray [1,2,3] [[0,0],[0,1],[1,1]]
Continuous Bins + One-hot [0.11,0.27,0.34] [[1,0,0],[0,1,0],[0,0,1]]

Piece-wise linear [1]

[0.11,0.27,0.34]

[[0.1,0,0],[1,0.2,0],[1,1,0.1]]

* Can we use
existing encoders
to transform the
heterogeneous
feature into
homogeneous
features?

PLE(:z:)z[l D === 0]

b3 — by

[1] Gorishniy, Y., Rubachey, I., Khrulkov, V., & Babenko, A. (2021). Revisiting deep learning models for tabular data. Advances in Neural Informat/on
Processing Systems 34, 18932 18943.



Related works

Heterogeneous embedding for different models

* Transformer-based model
e TabTransformer, FTTransformer, Autolnt, ILEAHE

« MLP-based model
* DeepFM, DANETSs, DVN v2

e Diffusion-based model
e TabDDPM

* Graph-based model
* T2G-Former



Transformer-based model

TabTransformer (2021)

Transform:
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Related works

FTTransformer (2022)
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Related works

Transformer-based model

ILEAHE (2023)

Extractor

Random
Embeddmg

Encoder X N

Learnt
Embedding

Multi-Head
Attention

Add & Norm
Feed Forward

Categorical: Dictionary embedding

Numerical: 2-layer perceptron

* TabTransformer
* Categorical: Dictionary embedding
* Continuous: None

* FTTransformer
* Categorical: Dictionary embedding
* Continuous: Linear

* Autolnt

 Categorical: One-hot + linear
* Continuous: Linear

 ILEAHE

* Categorical: Dictionary embedding
* Continuous: 2-layer perceptron



Related works
MLP-based model

DeepFM (2017)
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Normal Connection
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,\/ Sigmoid Function g S . |

&/ Activation Function

Categorical: One-hot encoder + linear

Numerical: Linear

DANETs (2017)
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Related works

MLP-based model

DVN v2 (2020)

_____________

(a) Stacked

@ Dense Feature (O Embedding @ Deep Layer
© Sparse Feature ) Cross Layer @ Output

..................... , N
000000000

(b) Parallel

Categorical: Dictionary embedding

Numerical: None

Gorishniy (2022)

Periodic Encoder

Xy One-hot Encoder

fi(z) = Periodic(z) = concat[sin(v), cos(v)], ®)

V= [27EE; wnay 2HEHE]

where ¢; are trainable parameters initialized from A/ (0, o).
o is an important hyperparameter that is tuned using valida-

Categorical: One-hot

Numerical: Periodic encoder 10




Related works
Ditfusion-based model Graph-based

TabDDPM (2023) T2G-Former (2023)
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(a) T2G-Former Architecture (b) Basic Block & GE Workflow

Figure 2: (a) The architecture of T2G-FORMER for tabular learning. Each T2G block builds an FR-Graph for a feature level
and performs selective interaction. A global readout node collects salient features from each layer to form tabular semantics.
(b) Ilustrating a basic block in Sec. and GE in Sec. .

« Use diffusion procedure to optimize the parameters * Add graph blocks to model the features’ interaction
« Categorical: One-hot * Categorical: Dictionary embedding

e Numerical: Quantile Gaussian Normalization  Numerical: Linear
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Related works

Section Conclusion

GET CHT CA|l HO| ADt OTt HIT FB] SAT COT MI] |Avg Rank ° The key tO handllng the

CatBoost 0.692 0.861 0.430 3.093 0.873 0.825 0.727 5.226 0.924 0.967 0.7413.6 £ 2.9 heterogeneous features

XGBoost 0.683 0.859 0.434 3.152 0.875 0.827 0.726 5.338 0.919 0.969 0.742 (4.6 £ 2.7

L4 [ ]

MLP 0.665 0.856 0.486 3.109 0.856 0.822 0.727 5.616 0.913 0.968 0.746 |8.5 & 2.6 1S the embeddlng
MLP-LR 0.679 0.861 0.463 3.012 0.859 0.826 0.731 5.477 0.924 0.972 0.744 |5.5+ 2.7
MLP-Q-LR 0.682 0.859 0.433 3.080 0.867 0.818 0.724 5.144 0.924 0.974 0.745 5.1+ 1.9 layer
MLP-T-LR 0.673 0.861 0.435 3.099 0.870 0.821 0.727 5.409 0.924 0.973 0.746 |5.1+ 1.7
MLP-PLR 0.700 0.858 0.453 2.975 0.874 0.830 0.734 5.388 0.924 0.975 0.743 |3.0 + 2.4

R d
ResNet 0.690 0.861 0.483 3.081 0.856 0.821 0.734 5.482 0.918 0.968 0.745 |6.7 & 3.3 esnet dall
ResNet-LR 0.672 0.862 0.450 2.992 0.859 0.822 0.733 5.415 0.923 0.971 0.743 |5.6 + 2.7 .
ResNet-Q-LR 0.674 0.859 0.427 3.066 0.868 0.815 0.729 5.309 0.923 0.976 0.746 |4.7 + 2.0 TranSfOI MCEr 1S nOt
ResNet-T-LR 0.683 0.862 0.425 3.030 0.872 0.822 0.731 5.471 0.923 0.975 0.744 4.1+ 1.9

ResNet-PLR 0.691 0.861 0.443 3.040 0.874 0.825 0.734 5.400 0.924 0.975 0.743 (3.24+1.3 better than MLP With

Transformer-L.  0.668 0.861 0.455 3.188 0.860 0.824 0.727 5.434 0.924 0.973 0.743 |5.9 & 2.2 .

Transformer-LR ~ 0.666 0.861 0.446 3.193 0.861 0.824 0.733 5.430 0.924 0.973 0.743 |5.2 + 2.2 SUltable heterogeneous
Transformer-Q-LR 0.690 0.857 0.425 3.143 0.868 0.818 0.726 5.471 0.924 0.975 0.744 4.4+ 2.2 .

Transformer-T-LR  0.686 0.862 0.423 3.149 0.871 0.823 0.733 5.515 0.924 0.976 0.744 [3.7 + 2.2 embeddlng

Transformer-PLR  0.686 0.864 0.449 3.091 0.873 0.823 0.734 5.581 0.924 0.975 0.743 |3.9+ 2.5

Gorishniy, Y., Rubachev, 1., & Babenko, A. (2022). On embeddings for numerical features in tabular deep learning. Advances
in Neural Information Processing Systems, 35, 24991-25004. 12



Problem

* Feature selection 1s proved critical for heterogeneous datasets.
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RandomForest oe \CrwdionlBoo%tin Tree
ET_Transformer ! = =t
\ S RandomF Ore S —

Resnet
R ET Transformer

100 Figure 3: Test accuracy of a GBT for
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on our classification benchmark on numer-
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puted with a Random Fore
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- Figure 4: Test accuracy changes when removing (a) or adding (b) uninformative features.
correspond to the 80% interval among the Features are removed in increasing order of feature importance (computed with a Random Forest).
different datasets. Added features are sampled from standard Gaussians uncorrelated with the target and with other
features. Scores are averaged across datasets, and the ribbons correspond to the minimum and
maximum score among the 30 different random search reorders (starting with the default models).

B0 7080%90%
entage of features removed
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Heterogeneous datasets contain many uninformative MLP-like architectures are not robust to
features. uninformative features.

Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural
Information Processmg Systems 35, 507-520.



Related works

Name Loss
LASSO min loss(w; X,y) + allwll,
w
Group J
LASSO mvgn loss(w; X,y) +az hl-||WGi||2
i=1
Sparse Group J
LASSO min loss(w; X,y) +a|lwlly + (1 — a) Z hl-||WGi||2
i=1
Tree-guided d
Group mmin loss(w; X, y) +ath}||WGi||2
LASSO i=0 j=1
Graph LASSO
rap min loss(w; X, y) + allwlly + (1 — @) )" M(i,j)(w; = w))?
Lj
GFLASSO

min loss(w; X, y) + a|lwll; + (1 — a) EA(i:j)(Wi — sign(i, jw;)*
w
iL,j

 Can we combine
the existing feature
selection
approaches with
state-of-the-art
models for
heterogeneous
datasets?

14



Related works

Heterogeneous feature selection approach

e Mask-based
e DANETsS

* Fuzzy rough set-based FS
* Fuzzy relation: Hu et al. (2006)
 Categorical: Wang et al. (2019)
* Supervised: Yuan et al. (2018), Yuan et al. (2021a)
* Unsupervised: Yuan et al. (2021b), Zhang et al. (2022)

15



Related works

DANETS (2017)
NFTCCL {2— 2]
e

w o L TR © ) A B~ ...~ TR R D
G reai® e 2 higher level feature abstraction —! 5 !
R | Rl J@igherlevel fatwesbatractin— (190 LR gl - L .
(1) feature selection i g

K+

ID height weight globulin albumin Na+ ID height weight globulin albumin Na+ K+

1 167 52 291 40.4 138.2 3.92 1 167 52 293 40.4 138.2 3.92
2 183 84 34.2 49.3 147.0 4.62 2 183 84 34.2 49.3 147.0 4.62
(a) A feasible path to extract critical semantics by feature selection & abstraction. (b) The process of our proposed DANET.

LT y
ff
' ] & Softmax
ik [ Additon | _

»  Use multiple learnable masks to
discard the uninformative features
parallelly

re abstraction output fusion

Linear & Sigmoid |))

: P = Feature abstraction is used to
Ez%jj o x abstract high level information
] (a) Abstract layer (K=3, d=2) (b) The i-th basic block (c) DANET

16



Related works

Algorithm 1: FMIUFS algorithm.

Input: 1S = (U, C), threshold value A, |C| = m T TTw Ty _ log [xz]Bl
Output: An ordered feature sequence S T S L i (14) |0l | & Z Ul -

1 — |er(zi) — en(zy)], if|er (2;) — cr(x;)| < €, and ¢ is continuous

1,ifex (z3) = cx(z;) and cgis discrete

Or k < 1 to m do
Calculate the fuzzy relation matrix MRck g

0, if|cx(xi) — cx(z;)| > €, and cg, is continuous I[xi]B n [x1]E|
log, — 2 ——%-,
o1 2 Z
Calculate the fuzzy entropy F'E(ck);

PR e
where ¢y, is the measured value of data point « for feature ¢ and €., a adaptive fuzzy radius. The we
end
for k < 1 to m do
for s < 1 to m do

Calculate the fuzzy joint entropy F E(cg,cs);
Calculate the fuzzy mutual information F'M I (cg;cs);
end

€, 18 calculated as following, "

op, [Zile N [Zilp|
Zl 2o —|U| s

std(ck)
“= % 19 FE(B,E) = -

where std(cy) is standard deviation of the feature values ¢ and A is a hyper-parameter that is fine-

tuned with step 0.1 in the range [0.1,2.0].

el = et e,

[zi] gl % |[zi] g [zl gl = 271 73 = 271 R4, 25)-
FMI(B; E) = |U|Z 20 % |ladp N [2dal e e ’

Fuzzy relevance Fuzzy redundance

F Rel(ck) = Z FMI(ck; cs).

end
for k < 1 to m do
| Calculate the fuzzy relevance F'Rel(cy);

elect feature c,, so that
S — S {ce ), Su € Su—
while | S, | # 0 do
for [ < 1 t0 |Sy| do
for s < 110 |S| do

| Calculate the fuzzy redundancy F Red(ci, cg, );
end

as the maximum value;

{Cell};

FRed(c, c¢,) = FRel(cg, ) — FRel(ce, |c)

end

_ FE(cy,|c) el(c
c)= TFE(cs) FRel(cy,).

The selected feature subset can minimize the uncertainty of other
unselected features.

26 return S. Yuan, Z., Chen, H., Zhang, P., Wan, J., & Li, T. (2021). A novel unsupervised approach to heterogeneous 17
feature selection based on fuzzy mutual information. /EEE Transactions on Fuzzy Systems, 30(9), 3395-34009.

FRel(

|S]
23 Select feature cp,. so that F'Rel(cp,.) — |—é| > FRed(cy,,ce,)
s=1

has the maximum value;
S+ SuU{ce.},Su + Su —

{ce. }s




Related works

How do they handle the heterogeneous features?

Hu 2016 Yuan 2018, 2021

1,ifex(2;) = cx(z;) and cyis discrete

i
1,iff(zs,a) = f(x;,a) and A is discrete, Va € A 0, ifek (1) # cx(x;) andeyis discrete S
i =
1 — |ex(z3) — ex(z5)|, if|ex (zs) — ex(z5)| < €c, and cg is continuous

Tfj =4 0,iff(x;,a) # f(z;,a) and A is discrete,Va € A

\0, if|ck (2;) — cx(z;)| > €, and ¢, is continuous

f(||zi — z;]|),if A is continuous
\ where ¢, is the measured value of data point x for feature ¢ and €., a adaptive fuzzy radius. The

€c, is calculated as following,
Zhang 2022 — stdiczc) (15)

where std(cy,) is standard deviation of the feature values ¢, and A is a hyper-parameter that is fine-

0,1ff (Iz', a) = f (fl?j., a) andais discrete tuned with step 0.1 in the range [0.1,2.0].

dk — 1 . ’ 1 1
ij = \ 1,iff(xi,a) # f(z;,a) and ais discrete Wang 2019

\ |f(xi,a) — f(xj,a)|,if a is continuous

y

1 : . .
= mcard(k & B seplon) —erlss)) Discretization for continuous features

The goal of those works is to find a feature subset that contains most or all of the information in the
original feature set based on the entropy they defined from the relation function or distance function.



Methodology for Embedding

* The existing embedding
module did not utilize
the information on
ordinal features and the
global frequency of
assignment

Feature | Value
Sex Male
Degree | PhD
Income | 1.8k

-

Occurrence | Observation | Probability | Coder
Male 1 0.5 1/0.5
Female 0 0.5 0
High School |1 0.6 1/0.1
Bachelor 1 0.3 1/0.1
PhD 1 0.1 1/0.1
0-10K 1 0.1 1/0.4
10k-20k 0.8 0.4 1/0.32
20-30k 0 0.4 0
>30k 0 0.1 0

19




Methodology for Embedding

SOTA (2022) Our embedding architecture

Piece-wise Linear
Xc { Periodic Encoder ] Xc Encoder / Periodic
Encoder
(o o (ar
/v Assignment Weight ]—;
\ Backbone |
Xy { One-hot Encoder ] X |:> X \ * E:>{ ackbone
Rank-hot Encoder ]—+
fi(z) = Periodic(z) = concat/sin(v), cos(v)], ®) Assignment Weight ﬁ
V= |2mENE; v 2nELE] Xn *
One-hot Encoder )4#

where c; are trainable parameters initialized from N(0, o). — —
o is an important hyperparameter that is tuned using valida-

tion sets. Assignment weight wy_, =

n

nf=a
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Methodology for Embedding
Alert2AKI Dataset

PR-AUC (5 Random Splits)
Intervention AKI Alert or Not
Random
Main-outcome | AKI Progression in 14 Days 1568+ 0089
Pre-treatment | EHR Records
: : MLP Backb
Patients Num | 6030 in 5 Hospitals (5082/948) o
HetMLP HetMLP nW MLP
SCALE |NUM We c.an compare the 2117+.0009 | .2087+.0164 | .2009+.0329
Nominal |9 p?edlcted outcome . Resnet Backbone
difference between different 0
. o etResNet HetResnet nW Resnet
Ordinal |19 treatments for an individual
. . 2087+.0255 | .2033+.0145 | .1711+.0186
Interval |3 to decide whether a patient
Ratio 20 should accept the treatment.

Our HetMLP got a 1.43% performance up
AKI: Acute Kidney Injury compared with SOTA on this dataset.



Will the patients benefit from the alert?

Splitting 1 Splitting 2
Patients Num 3536 Patients Num 3552
Benefited: AKI=1-2>AKI=0 15 Benefited: AKI=1->AKI=0 8
Harmful: AKI=0->AKI=1 14 Harmful: AKI=0->AKI=1 2

Splitting 3 Splitting 4
Patients Num 3504 Patients Num 3536
Benefited: AKI=1-2>AKI=0 26 Benefited: AKI=1->AKI=0 9
Harmful: AKI=0->AKI=1 4 Harmful: AKI=0->AKI=1 9

The model’s prediction is consistent with the conclusion that Alerts did not reduce
rates of our primary outcome among hospitalized patients with AKI.



Futural Plan

* Heterogeneous Embedding

* Heterogeneous feature structure and instance structure (such as cluster)
* Computation Complexity
* Detailed experiments on more backbone and datasets

* Heterogeneous Feature Selection

* Discover more effective heterogeneous feature distance (Wasserstein etc.)
 Combine intra-attribute structures and inter-attribute structures



