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ABSTRACT

As the complexity of real-world tasks and data sources continues to grow, the need

for heterogeneous feature processing techniques becomes increasingly apparent.

Traditional machine learning algorithms which is designed for homogeneous data

can be degraded for heterogeneous data. How to handle heterogeneous features

is a very important problem. Our research problem for handling heterogeneous

data is divided into two sub-problem: heterogeneous feature embedding and het-

erogeneous feature selection. This survey explores the existing works for both

the heterogeneous embedding algorithms and feature selection algorithms which

is a very critical step in data analysis. The survey presents our methodologies and

progress in addressing the identified problem, while outlining future plans.

1 BACKGROUND

1.1 INTRODUCTION

In many real world scenarios, the data can be collected from different sensors, devices, or plat-

forms. Heterogeneous data can better reflects the complexity of real-world situations, and collec-

tively provide a more complete and nuanced understanding of a situation. For example, in healthcare

field, patient care can be enhanced by combining medical records, imaging data, and genetic infor-

mation. In finance, making investment decisions may involve analyzing economic data, market

sentiment from social media, and historical trends. Utilizing heterogeneous data provides a broader

context for prediction and decision-making.

The first research problem that we identified is how to embedding the heterogeneous features for

the given target of the task. For tabular data, the categorical feature can be nominal or ordinal and the

continuous data can interval or ratio. Utilizing homogeneous models to handle the heterogeneous

features can be harmful for the task performance. How to utilize the information inside the het-
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erogeneous data is very important. One critical technique is the heterogeneous feature embedding.

For instance, target statistic (TS) methods Micci-Barreca (2001) Zhang et al. (2013) Bottou & Cun

(2003) He et al. (2014) Langford et al. (2009) Ling et al. (2017) use the expected value of the target

variable to replace the original categorical feature or use target statistic as new features. One-hot

encoder, rank-hot encoder, and ordinal encoder transform the categorical variables into continuous

values. TabTransformer Huang et al. (2020) architecture uses a column embedding layer for cate-

gorical features and a layer normalization for continuous features. The input of transformer is only

categorical features. Then the coded features will be concatenated for downstream MLP model. FT-

Transformer Gorishniy et al. (2021) uses a embedding layer for categorical features and linear layer

for continuous features. The embedded data was then processed by a transformer and final linear

layer for output prediction. Piece-wise linear encoder and periodic encoder for continuous features

introduced by Gorishniy et al. (2022) was used to handle the heterogeneous tabular data. The back-

bone model is MLP and hyper-parameter is tuned by Optuna. However, the structure information

and global information inside the heterogeneous features is not well handled in their embedding

works.

The second research problem is how to select heterogeneous features to improve the model’s

performance in the given task. Feature selection is a very important technique in machine learning.

It is helpful to reduce model complexity and avoid over-fitting. It aims to keep the most relevant

features and remove the irrelevant and redundant features. In this survey, we are interested in task-

driven feature selection for data with heterogeneous structural features.

Structures feature selection is not a new technique. The existed structural feature selection algo-

rithm can be divided into three classes based on the structures assumptions: group-based, tree-based,

and graph-based. For example, Group LASSO Yuan & Lin (2006) select or not select a group of

features as a whole. While Sparse Group LASSO Simon et al. (2013) introduces sparsity prior with

intra-group and inter-group simultaneously. Tree-guided group LASSO Liu & Ye (2010) use tree to

represent the structure of features while the leaf nodes are features and the internal node is associ-

ated with a weight which represents the height (correlation) of its subtree. Graph LASSO Ye & Liu

(2012) add a positive adjacency matrix to measure the pair-wise dependency. GFLasso Kim & Xing

(2009) also take the negative correlation into consideration. However, how to automatically infer

the dependency and structures is still a problem.

In recent years, fuzzy rough set-based (FRS) methods for heterogeneous feature selection have

attain more and more attentions. The difference between the FRS model and tradition models to

handle the heterogeneous features is the determination of fuzzy relation matrix, which can calculate
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the distance between two data points. Hu et al. (2006) lets fuzzy relation between two points is 1

when value of categorical attribute is the same and 0 otherwise. For continuous attributes, they use

a norm to measure the distance between two points and a similarity function (which can map 0 to 1

and map ∞ to 0) to measure the relation of those two points from the calculated distance. Yuan et al.

(2018), Yuan et al. (2021a), Yuan et al. (2021b) propose a implementation of the similarity function

for continuous features. They use the clip negative linear function which return 0 when the absolute

difference between the two values is larger than or equal to adaptive fuzzy radius ϵk. The clip

linear function return 1 when the absolute difference is 0 for those points. Zhang et al. (2022) use

a heterogeneous distance to measure the relationship among data points for heterogeneous features.

The distance between continuous features is measured by the absolute value of difference.

In the following part, we will introduce the related works and our methodology and future plan to

handle the heterogeneous problem.

2 RELATED WORKS

2.1 HETEROGENEOUS FEATURE EMBEDDING

Recently, heterogeneous feature embedding algorithms become more and more important. In order

to handle these heterogeneous features, various embedding techniques have been developed to map

them into the real number field R or the interval [0, 1]. Existing embedding algorithms for features

with heterogeneous scales can be broadly categorized into two classes: unsupervised and supervised

(target-aware) methods.

Unsupervised Feature Encoder Unsupervised feature embedding approaches do not rely on la-

bel information during the embedding process. Instead, they typically utilize certain priors or as-

sumptions, such as orthogonality, to guide the embedding process. These methods aim to discover

inherent patterns or structures within the data itself, without considering the specific labels or target

variable. By leveraging these priors, unsupervised embedding techniques can effectively capture the

underlying characteristics of the features and represent them in a transformed space. The traditional

unsupervised encoder for different type feature is listed in the table 1.

Nominal. One-hot encoder is a widely used embedding algorithm for categorical features. It repre-

sents each unique value of a feature as a binary number, indicating whether the corresponding value

appeared or not. The resulting mapped vector for a feature has a size equal to the number of unique

feature values.

Dummy encoding is similar to the one-hot encoder, but it reduces the vector size by one (n − 1)

by designating one value as the reference category and representing it with a zero vector. The other
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Feature Scale Encoder Example

Nominal One-hot [1,2,3]→[[1,0,0],[0,1,0],[0,0,1]]

Binary [1, 2, 3] → [[0, 0], [0, 1], [1, 0]]

Dummpy [1, 2, 3] → [[1, 0], [0, 1], [0, 0]]

Count [1, 1, 3] → [[2], [2], [1]]

Simple [1, 2, 3] → [[ 23 ,−
1
3 ,−

1
3 ], [−

1
3 ,

2
3 ,−

1
3 ], [−

1
3 ,−

1
3 ,

2
3 ]]

Ordinal Ordinal [1, 2, 3] → [1, 2, 3]

Rank-hot [1, 2, 3] → [[1, 0, 0], [1, 1, 0], [1, 1, 1]]

Gray [1, 2, 3] → [[0, 0], [0, 1], [1, 1]]

Continuous Bins+One-hot [0.11, 0.22, 0.31] → [[1, 0, 0], [0, 1, 0], [0, 0, 1]]

Piece-wise linear (PLE) [0.11, 0.22, 0.31] → [[0.1, 0, 0], [1, 0.2, 0], [1, 1, 0.1]]

Other Hashing /

Table 1: Traditional unsupervised feature encoders.

values are then encoded using binary vectors. For example, a feature with three values would be

represented as [0,0] for one value and [1,0] or [0,1] for the other two values.

Binary encoder maps the original feature values into a binary representation using a fixed number

of binary bits. The number of bits required is determined by the formula ⌈log2(n)⌉, where n is the

number of unique feature values.

Frequency encoder, also known as Count encoder, maps each feature value to its frequency within

the dataset. This encoding technique replaces the original value with its corresponding frequency,

effectively representing the value by its occurrence count.

Simple encoder is similar to dummy encoding, but it replaces the binary values 0 and 1 with continu-

ous values. Specifically, it substitutes 0 with − 1
n and 1 with n−1

n , where n represents the number of

unique feature values. This encoding approach retains the ordinal information of the feature values.

Ordinal. Ordinal encoder is used to map a feature with ordinal scale into an integer value. It assigns

a unique integer to each distinct value of the feature, considering the order or ranking among the

values.

Rank-hot encoder, also known as thermometer encoder, is similar to one-hot encoding. However,

instead of having only one value as hot (1) and the others as cold (0), it sets all values up to and

including the current rank as hot. This encoding method captures the ordinal nature of the feature

values.

Gray encoder, a type of binary encoder, ensures that adjacent values in the encoded representation

differ by only a single bit. This helps in reducing errors or noise during the encoding process.
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Continuous. The common practice is to use the continuous value of a feature directly as input

for the backbone model. Another approach involves discretizing the feature values and applying

categorical encoders.

One of discretization approach is the piece-wise linear (PLE) encoder, introduced by Gorishniy

et al. (2022). The PLE encoder is inspired by the cumulative distribution function of a value. It first

discretizes the continuous values of the feature and then applies the rank-hot encoder. Within each

bin, the PLE encoder replaces the value f(x) (which is initially set to 1) with a linear transformation

f(x) = x−bt−1

bt−bt−1
, where bt−1 and bt represent the lower and upper boundaries of the bin, respectively.

By discretizing the feature values and applying the rank-hot encoder with this modified transforma-

tion, the PLE encoder captures the relative position or rank of the values within each bin, enabling

the model to learn and leverage this ordinal information during training.

Others. Base-N encoder is an encoding method that maps feature values into their base-N represen-

tation. In this encoding scheme, the base-N refers to the numerical base used for the representation,

where base-1 corresponds to the one-hot encoder, base-2 corresponds to the binary encoder, and

base-N corresponds to the ordinal encoder, with N being the number of unique values for the spe-

cific feature. This encoding approach leverages the inherent ordinality of the feature values by

assigning them integer values based on their order or rank.

Hashing encoder is a technique that maps the original feature values into hash values. This encoding

method involves applying a hash function to transform the values into a new representation. How-

ever, finding an appropriate hash function that yields good results for downstream models can be a

non-trivial task. The effectiveness of the hashing encoder depends on the quality of the chosen hash

function and its compatibility with the specific downstream models being used.

Supervised Feature Embedding Supervised embedding methods have the potential to enhance

model performance by leveraging the supervised label information during the embedding process.

These techniques incorporate the target variable or label into the embedding algorithm, allowing the

model to learn informative representations that are directly aligned with the prediction task.

However, it is important to be cautious when applying supervised embedding, as it can inadvertently

introduce target leakage. Target leakage occurs when the embedding process unintentionally incor-

porates information from the target variable that would not be available in a real-world prediction

scenario. This leakage can lead to inflated performance during training but can severely degrade the

model’s generalization ability and performance on unseen data.

To mitigate target leakage and ensure reliable performance, careful consideration should be given

to the design and implementation of supervised embedding methods. It is crucial to ensure that
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the embedding process only utilizes information that would be available at the time of prediction,

preventing any inadvertent incorporation of future or otherwise unavailable information. Thorough

validation and evaluation on separate test sets can help detect and address any potential target leakage

issues, allowing for more robust and reliable model performance.

Categorical feature. The greedy target statistic Micci-Barreca (2001) estimates the expected value

of the target variable, denoted as E(y|x = xk), based on the training dataset. To mitigate potential

noise or variability in the estimates, it is common to apply smoothing using parameters a and p

Zhang et al. (2013). The smoothed estimate can be calculated using the following formula:

xi
k =

∑n
j=1 Ixi

j=xi
k
∗ yj + ap∑n

j=1 Ixi
j=xi

k
+ a

(1)

Holdout target statistic Chen & Guestrin (2016) use the subset of instances excluding xk,

xi
k =

∑
xj ̸=xk

Ixi
j=xi

k
∗ yj + ap∑

xj ̸=xk
Ixi

j=xi
k
+ a

(2)

Ordered target statistic Prokhorenkova et al. (2018) creates a virtual ‘time’, and use its all available

history to calculate the target statistic.

Continuous feature. The one-blob encoding method, proposed by Müller et al. (2019), assumes

that the feature values follow a Gaussian or Laplace distribution. Each value is represented as a

“blob” with a probability distribution centered at that value. The adjacent bins or intervals around

the value correspond to the probabilities associated with that value. This encoding approach captures

the uncertainty or variability in the feature values by modeling their distributions.

The periodic encoder, introduced by Gorishniy et al. (2022), maps a feature into its Fourier forms.

The encoding is represented as a vector f(x) = [sin(v), cos(v)], where v = [2πc1x, .., 2πckx]. The

frequency vector ci can be learned from the data. This encoding technique is particularly useful

for handling periodic or cyclical features, where the relationship between values wraps around in

a circular fashion (e.g., time of day or day of the week). By representing the feature values in

their Fourier forms, the periodic encoder captures the underlying cyclical patterns and relationships

within the data.

Deep learning In recent years, transformer-based heterogeneous feature embedding techniques

for tabular data appeared, such as TabTransformer Huang et al. (2020), and FTTransformer Gorish-

niy et al. (2021).
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As shown in the figure 1, TabTransformer Huang et al. (2020) architecture uses a column embedding

layer for categorical features and a layer normalization for continuous features. The input of trans-

former is only categorical features. Then the coded features will be concatenated for downstream

MLP model. As shown in the figure 2 3, FTTransformer Gorishniy et al. (2021) uses a embedding

layer for categorical features and linear layer for continuous features. The embedded data was then

processed by a transformer and a linear layer for output prediction.

Piece-wise linear encoder and periodic encoder for continuous features introduced by Gorishniy

et al. (2022) was used to handle the heterogeneous tabular data. The backbone model is MLP and

hyper-parameter is tuned by Optuna. The experiment result showed the tuned MLP model by Optuna

with heterogeneous embedding module is better than transformers on the given tabular data.

However, the structure information and global information inside the heterogeneous features is not

well handled in existing embedding works for heterogeneous data.

Figure 1: TabTransformer.
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Figure 2: FTTRansformer.

Figure 3: Feature Tokenizer of FTTransformer.

2.2 HETEROGENEOUS FEATURE SELECTION

Feature selection is one of the most important critical technique in machine learning. In this section,

we will introduce the structural feature selection, multi-view feature selection, and fuzzy rough set-

based feature selection for heterogeneous data respectively.

2.2.1 STRUCTURAL FEATURE SELECTION

LASSO Tibshirani (1996) is the basic feature selection algorithm with l1-norm sparsity-induced

penalty term, which can force some feature coefficients to be close to zero. Let w denotes feature

coefficient, then the objective function of LASSO is:

minwloss(w;X, y) + α||w||1 (3)

where loss(·) is the loss function of the task, such as cross-entropy or least square loss. The LASSO

approach usually assumes independence among features. Group LASSO Yuan & Lin (2006) treats
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whole groups of features as a single entity, with the selection or exclusion unit being a group rather

than an individual feature. The objective function of Group LASSO is:

minwloss(w;X, y) + α

g∑
i=1

hi||wGi ||2 (4)

where hi is the weight of the i-th group wGi
which is given before optimization. In order to address

the miss-selection problem in Group LASSO, Sparse Group LASSO Simon et al. (2013) add a l-1

penalty term to balance the intra-group selection and inter-group selection. The objective function

of Group LASSO can be formulated as the following,

minwloss(w;X, y) + α||w||1 + (1− α)

g∑
i=1

hi|||wGi
||2 (5)

where α is a balancing parameter between zero and one. In Sparse Group LASSO, the features in

the selected group can also be ignored. Tree-guided Group LASSO Liu & Ye (2010) is used to

handle groups that can be represented by an index tree, where the leaf nodes represent features, and

the internal nodes represent groups and subgroups. The objective function of Tree-guided Group

LASSO is:

minwloss(w;X, y) + α

d∑
i=0

ni∑
j=1

hi
j ||wGi

j
||2 (6)

where α is a regularization parameter and hi
j is the prior for group Gi

j . Graph LASSO Ye & Liu

(2012) uses a undirected graph to represent the strong pairwise dependencies between features. The

formulation of Graph LASSO is:

min
w

loss(w;X, y) + α||w||1 + (1− α)
∑
i,j

M(i, j)(wi − wj)
2 (7)

where the second regularization term is to ensure the feature’s dependencies. Features with a large

Ai,j will be similar to each others. GFLASSO Kim & Xing (2009) models the relationships for both

positive and negative correlations. The objective function of GFLASSO is:

min
w

loss(w;X, y) + α||w||1 + (1− α)
∑
i,j

A(i, j)|wi − sign(ri,j)wj | (8)

However, two challenges exist in existing works. First, learning the structures from data instead

of relying on a prior for feature selection remains a problem. Second, for heterogeneous features,

measuring the distance between them becomes more difficult, making learning the structures even

more challenging.
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2.2.2 MULTI-VIEW AND MULTI-SOURCE FEATURE SELECTION

In reality, the heterogeneous data from different source and different scales (such as nominal, ordi-

nal) has been increased. For example, data from genes, electronic health records, clinical diagnosis,

and images, have increased with the development of medical devices and computers science. How

to fuse heterogeneous features together and find more efficient feature selection algorithm is still a

problem. The current researches can be divided into two classes: traditional approaches and fuzzy

rough set-based approaches.

The traditional heterogeneous feature selection approaches can be divided into two classes: multi-

source feature selection and multi-view feature selection. The difference between multi-source and

multi-view is illustrated in the figure 4.

Figure 4: The difference between multi-source feature selection and multi-view feature selection.

Multi-source feature selection is aim to select the most relevant features from the target source where

each sources is constructed by many features. The difference between multi-source feature selection

and traditional methods is that it utilize all heterogeneous features while only select features from

one target source. For example, GPCOV algorithms use linear combination of local structures inside

the sources as global pattern. In the feature selection step, Zhao & Liu (2008) selects features with

highest variances greedily in the target source while d’Aspremont et al. (2004) takes the feature

dependency into consideration and select features that retain maximum total variance.

Multi-view feature selection is aim to select the most relevant features from multi-sources simul-

taneously. For example, the pixels, the tabular terms, and text terms that is associated with the

instance. For supervised task, Sparse Group is often used where the different view is regarded as

different groups. For unsupervised task, the loss function is build by a pseudo class label which is

learned from spectral clustering prior in m views. AUMFS’s Feng et al. (2013) objective function is
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as follows,

min tr(F ′
m∑
i=1

λiLiF ) + β(||XW − F ||2,1 + α||W ||2,1)

s.t.F ′F = Ic, F ≥ 0,

m∑
i=1

λi = 1, λi > 0

(9)

where λi is used to balancing the contribution of different hidden spectral clusters and F is the

pseudo class label. Compared with AUMFS, MVFS Tang et al. (2013) learns a weight matrix for

each view. The objective function of MVFS is as follows,

min tr(F ′
m∑
i=1

λiLiF ) +

m∑
i=1

β(||XW − F ||2,1 + α||W ||2,1)

s.t.F ′F = Ic, F ≥ 0,

m∑
i=1

λi = 1, λi > 0

(10)

Although the input structure is heterogeneous, those feature selection methods requires continuous

homogeneous inputs. The transformation of data scales can be harmful to models’ performance. For

example, there are usually two methods to convert the features into homogeneous data. First, using

discretization methods to transform the continuous features into discrete nominal features. Second,

using the integer number to replace the discrete feature. However, discretization methods will lead

to information loss, such as ordering of numerical value, and geometry on the real space; replace the

nominal features by integers can introduce meaningless structures, such as ordering.

2.2.3 FUZZY ROUGH SET-BASED HETEROGENEOUS FEATURE SELECTION

Recently, fuzzy rough set (FRS) model have attained more and more attention in the feature selection

field. It can be applied to the heterogeneous features and overcome the information loss problem of

discretization methods. The fuzzy similarity relation is defined to measure the similarity between

data objects. The key of fuzzy rough set-based approaches is to select suitable similarity matrix.

The fuzzy uncertainty function is defined as following for heterogeneous features Hu et al. (2006),

rkij =


1, iff(xi, a) = f(xj , a) and A is discrete,∀a ∈ A

0, iff(xi, a) ̸= f(xj , a) and A is discrete,∀a ∈ A

f(||xi − xj ||), if A is continuous

(11)
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where f is a similarity function which satisfies

f(0) = 1, f(∞) = 0, f(∗) ∈ [0, 1] (12)

Wang et al. (2019) introduces a similarity measure for categorical features, which is defined as

following,

rBij =
1

|A|
card(k ∈ B : ck(xi) = ck(xj)) (13)

where ck is the measured value of feature k and |A| is the feature number.

In Yuan et al. (2018),Yuan et al. (2021a), Yuan et al. (2021b), the fuzzy similarity degree between

xi and xj for feature ck is defineed as following,

rkij =



1, ifck(xi) = ck(xj) and ckis discrete

0, ifck(xi) ̸= ck(xj) andckis discrete

1− |ck(xi)− ck(xj)|, if|ck(xi)− ck(xj)| ≤ ϵck and ck is continuous

0, if|ck(xi)− ck(xj)| > ϵck and ck is continuous

(14)

where ck is the measured value of data point x for feature ck and ϵck a adaptive fuzzy radius. The

ϵck is calculated as following,

ϵck =
std(ck)

λ
(15)

where std(ck) is standard deviation of the feature values ck and λ is a hyper-parameter that is fine-

tuned with step 0.1 in the range [0.1,2.0].

In Zhang et al. (2022), the heterogeneous distance between two data points, which is contrast to

similarity, is defined as following,

dkij =


0, iff(xi, a) = f(xj , a) andais discrete

1, iff(xi, a) ̸= f(xj , a) and ais discrete

|f(xi, a)− f(xj , a)|, if a is continuous

(16)

2.2.4 SELECTION POLICY

In Yuan et al. (2021b), Zhang et al. (2022), the features are sorted by sequence and the features are

selected by a greedy algorithms when the selected number K is given and the K is determined by

exhaustive methods.
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3 METHODOLOGY FOR HETEROGENEOUS EMBEDDING

3.1 NOTATION AND PROBLEM

Given dataset D = {xi}ni=1 with m heterogeneous features F = {f1, ..fm}, we aim to learn a low-

dimensional representation hi for each instance, such the effective information in original space

X can be preserved in the united space H . The input of the heterogeneous embedding modules

is features xi of data points i and the output is hidden representation hi of this data point i. The

preserved effective information of the embedding module is evaluated by the task performance in

real world, such as classification for supervised task and clustering for unsupervised task.

3.2 HETEROGENEOUS FEATURE EMBEDDING

For any heterogeneous features, a key characteristic shared by those features is the occurrence prob-

ability of features’ measurements. We introduce the occurrence space to handle the heterogeneous

problem.

Definition 1 Occurrence Space H . Every data point h in the occurrence space H represent the

probability of the current measurement xi where axis is denoted by a feature’s specific value. The

occurrence space’s dimension is
∑n

i=1 |fi| where |fi| is the potential assignments number of the

feature fi. The range of occurrence space is [0, 1].

Regardless of the feature scales (nominal, ordinal, interval, or ratio) and feature sources (such as text,

images, tabular data), these occurrences hold significant meaning for the instance. For example, the

occurrence of male for an individual, or the occurrence of face of an individual is in the same hidden

space.

The subsequent aspect involves the integration of information from the occurrence space and the

original value representations. Nominal features are encoded using a one-hot encoder, facilitating

the capture of occurrence probabilities. For ordinal features, we employ a rank-hot encoder, as the

occurrence of higher rank values implies the occurrence of lower rank values. In order to apply to

continuous features, we transform the continuous features into nominal features by Fourier trans-

formation with learnable parameters or ordinal features by linear-piece-wise encoder. The Fourier-

based form enables the modeling of occurrence patterns across different frequencies.

Figure 5 is an example of the representation in occurrence space. There are three feature in the

original feature space: sex, educational background, income per month. Then the occurrence space

is [male, female, high school, Bachelor, PhD, 0-10K, 10k-20k, 20-30k, >30k]. The patient A (male,

PhD, 1.8k) in the original space is encoded as [male: 1, female: 0, high school: 1, Bachelor: 1, PhD:
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Occurrence Observation Frequency
Male 1 0.5
Female 0 0.5
High School 1 0.6
Bachelor 1 0.3
PhD 1 0.1
0-10K 1 0.1
10k-20k 0.8 0.4
20-30k 0 0.4
>30k 0 0.1

Feature Value
Sex Male
Degree PhD
Income 1.8k

Figure 5: An example of the occurrence space

X

𝑋!

𝑋"

𝑋#

One-hot Encoder

Assignment Weight

Rank-hot Encoder

Assignment Weight

Learnable Fourier 
Feature

Y

*

* Backbone

Figure 6: Proposed embedding module. The proposed embedding module incorporates the infor-
mation of occurrence probabilities, as indicated by the red text. The module handles three types of
features: continuous (XC), ordinal (XO), and nominal (XN ).

1, 0-10k: 1, 10k-20k: 0.8, 20-30k: 0, >30k: 0] in the occurrence space when we use piece-wise

linear encoder for continuous features.

In order to introduce the global frequency information of each feature into the embedding mod-

ule, we use the feature value’s frequency to re-weight the occurrence probability. The proposed

methodology involves assigning lower values to features with higher frequencies after the embed-

ding process, while assigning higher values to features with lower frequencies. This approach is

based on the rationale that neural units may experience fatigue when exposed to high-frequency

values, resulting in reduced input. Figure 6 provides a visual representation of our proposed inverse

probability weighting encoder.
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3.3 EXPERIMENT

3.3.1 TASK: PREDICTING OUTCOME IN RANDOMIZED TRIAL

Predicting individual outcomes in randomized trials is a fundamental objective in causal inference.

In datasets derived from randomized trials, instances are characterized by three classes of features:

treatment, pre-treatment, and post-treatment. The values of the treatment feature are not determined

by the data collector but are instead assigned by a random generator controlled by the researchers.

Subsequently, the treatment is implemented according to the assigned value by the trial executor.

The pre-treatment features are measured prior to the assignment of the treatment value, while the

post-treatment features are measured subsequent to the treatment assignment. Among the post-

treatment features, three categories can be distinguished: main outcome, secondary outcome, and

additional post-treatment variables.

3.3.2 DATASET

We have curated a comprehensive collection of heterogeneous randomized trial datasets and made

them publicly accessible on the website: https://github.com/herdonyan/RandomizedTrialDataset.

The datasets encompass a wide range of randomized trials, representing a valuable resource for

researchers in various fields. Despite the significant cost associated with designing and executing

randomized trials, there is a growing trend among funding agencies and journals to mandate the

availability of these datasets, while ensuring privacy protection measures are in place. This initia-

tive aims to promote transparency, reproducibility, and collaboration in the scientific community by

facilitating access to randomized trial data and fostering further research advancements.

The AKIAlert dataset Wilson et al. (2021) is a valuable resource derived from a randomized trial

that recorded electronic health record (EHR) data of patients. This dataset follows a double-blinded,

multicenter, and parallel design. The primary focus of the trial is to evaluate the impact of an acute

kidney injury (AKI) alert provided by the electronic system compared to usual care without an

alert. The participants were identified electronically and randomized using a simple randomization

approach with allocation concealment.

The dataset comprises a total of 6,030 adult inpatients with AKI, which is defined based on the Kid-

ney Disease: Improving Global Outcomes (KDIGO) creatinine criteria. It includes 49 pre-treatment

variables, 1 main outcome variable, and additional post-treatment variables. Among the 49 pre-

treatment variables, there are 9 nominal features, 19 ordinal features, 3 interval features, and 20

ratio features.
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Within the cohort of 6,030 patients, 948 individuals experienced AKI progression within a 14-day

period, while 5,082 patients did not exhibit such progression. The dataset provides a valuable re-

source for conducting analyses and exploring the impact of the AKI alert on various post-treatment

variables, aiding researchers in gaining insights into the management and outcomes of AKI in the

context of electronic health records.

The primary task of interest in the AKIAlert dataset is to predict the occurrence of AKI progression

within 14 days of randomization based on the available pre-treatment variables. This task can be

formulated as a classical binary classification problem, where the objective is to distinguish between

patients who will experience AKI progression within the specified timeframe and those who will

not.

By leveraging the 49 pre-treatment variables present in the dataset, researchers can develop predic-

tive models and algorithms to identify patterns and relationships that may contribute to the prediction

of AKI progression. These variables, including the 9 nominal features, 19 ordinal features, 3 inter-

val features, and 20 ratio features, offer a rich set of information to analyze and extract relevant

predictors for the binary classification task.

The successful development of a predictive model for AKI progression within 14 days in randomized

trials can have significant clinical implications, enabling early identification and intervention for

alert-benefited patients while avoid the for alert-harmful patients. Moreover, it can contribute to

advancing the field of acute kidney injury research and improving patient outcomes in healthcare

settings.

In order to address the challenge posed by label imbalance, we employ the average precision score

(PR-AUC) as the performance metric for evaluating the models. The PR-AUC, a commonly uti-

lized measure in binary classification tasks, provides a comprehensive evaluation of the model’s

effectiveness in scenarios where there is a significant disparity in the class distribution.

Unlike conventional evaluation metrics such as accuracy or F1-score, the PR-AUC takes into account

both precision and recall, which are particularly relevant in imbalanced datasets. Precision quantifies

the proportion of correctly predicted positive instances out of all instances classified as positive,

while recall captures the proportion of correctly predicted positive instances out of the total number

of actual positive instances.

By calculating the area under the precision-recall curve, the PR-AUC delivers a comprehensive

assessment of the model’s performance across a range of classification thresholds. This approach

proves advantageous when dealing with imbalanced datasets, as it focuses on the performance of
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the minority class (AKI progress) and is less influenced by the dominance of the majority class

(non-AKI progress).

Employing the PR-AUC as the evaluation metric in the assessment of models on the AKIAlert

dataset ensures a robust estimation of their predictive capabilities, mitigating the effects of label

imbalance. Higher PR-AUC scores signify superior performance in accurately identifying instances

of AKI progression, thereby contributing to enhanced patient management and facilitating informed

clinical decision-making.

3.3.3 IMPLEMENTATION DETAILS

To address the potential impact of randomness in dataset splitting, all experiments were conducted

five times using different random splits of the dataset. This approach helps mitigate the influence of

splitting randomness and provides a more robust evaluation of the models’ performance.

Four different models were evaluated on the dataset: HetMLP (our proposed model), Vanilla MLP,

and stochastic prediction. Each model was trained and tested using the randomized dataset splits,

ensuring a comprehensive assessment of their respective performance.

By employing multiple executions of the experiments and evaluating different models, we aim to

obtain reliable and statistically significant results. This approach allows us to analyze the perfor-

mance of each model across multiple iterations, capturing variations in their predictive capabilities

and facilitating a more comprehensive understanding of their strengths and weaknesses.

The VilliaMLP model utilized a multi-layer perceptron (MLP) architecture as its backbone. The

MLP consisted of three layers, with hidden units of 1024, 512, and 256, respectively. Dropout

regularization was applied with a rate of 0.1 to prevent overfitting.

The learning rate for training the model was set to 0.001, promoting efficient optimization during

the learning process. Weight decay regularization with a coefficient of 0.000001 was incorporated

to prevent excessive model complexity and enhance generalization.

To assess the model’s performance and prevent overfitting, a train/test splitting ratio of 8:2 was

employed, with 80% of the data allocated for training and 20% for testing. Additionally, a

train/validation splitting ratio of 9:1 was used to further evaluate the model’s performance during

training. Validation was performed at each epoch, and an early stop policy was implemented to

select the best-performing model based on the validation dataset. The early stop epoch was set to

20.

For handling the different types of features, specific encoders were employed. Nominal features

were encoded using one-hot encoding, while ordinal features were encoded using an ordinal en-
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coder. Continuous features were encoded using a learnable Fourier encoder, allowing the model

to effectively capture and represent the underlying patterns in the data. The maximum frequency

number for the Fourier encoder was set to 200.

To address label imbalance, the loss function employed a weighting scheme based on the labels.

This approach helped mitigate any potential degradation in performance resulting from imbalanced

class distributions, ensuring fair and accurate model evaluation.

By leveraging the VilliaMLP model with these configurations and techniques, we aimed to effec-

tively leverage the MLP architecture and appropriate feature encoders to achieve accurate predic-

tions while mitigating common challenges such as overfitting and label imbalance.

In contrast to VilliaMLP, HetMLP shares a similar architecture and configuration, with the exception

of the feature encoders used. In HetMLP, we adopted a different approach by assigning weights to

the transformed features based on their inverse probabilities.

Specifically, the weight assigned to each transformed feature was determined by its frequency in

the dataset. If a feature appeared frequently, it was assigned a smaller weight, whereas features

with lower frequencies were given larger weights. This weighting scheme aimed to address the

heterogeneity in feature frequencies and ensure that each feature contributed appropriately to the

overall model representation.

By incorporating these weighted transformed features, HetMLP aimed to capture the varying im-

portance and impact of different features based on their frequencies. This approach allowed the

model to effectively handle the heterogeneous nature of the dataset, providing a more nuanced and

informative representation of the input data.

Overall, HetMLP and VilliaMLP shared similar architectural configurations, but their respective

feature encoding strategies differed. HetMLP leveraged the inverse probability weighting of trans-

formed features to effectively address the heterogeneity of feature frequencies and enhance the

model’s predictive performance.

Stochastic prediction was employed as a baseline method to compare against the performance of the

proposed models. In this approach, the probability p(y) was utilized to make predictions regarding

whether a patient would experience acute kidney progress in the future.

By employing stochastic prediction, we aimed to establish a reference point for evaluating the ef-

fectiveness of the other models. The baseline method provided a benchmark against which the per-

formance improvements of the CatBoostTree, VilliaMLP, and HetMLP models could be assessed.
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Algorithm PR-AUC
HetMLP .2117±.0009
VilliaMLP .2087±.0164
Baseline (Stochastic) .1568±.0089

Table 2: PR-AUC of different models

Through this comparative analysis, we sought to highlight the advancements and enhancements

achieved by the proposed models over the stochastic prediction baseline. The evaluation of the

models against this baseline allowed for a comprehensive understanding of their predictive capabil-

ities and demonstrated the potential improvements that can be achieved in predicting acute kidney

progress within the given dataset.

3.4 RESULT ANALYSIS

In order to assess the effectiveness of our algorithm, we compared its performance with that of

VilliaMLP using the average precision score (PR-AUC) metric. The PR-AUC metric was chosen to

account for the label imbalance in the dataset.

Upon evaluating the results, it can be observed that our algorithm outperformed VilliaMLP in terms

of PR-AUC. The higher PR-AUC score achieved by our algorithm indicates its superior ability to

accurately predict the occurrence of acute kidney progress within the specified timeframe.

The comparison with VilliaMLP serves as empirical evidence supporting the effectiveness and im-

proved performance of our algorithm in addressing the given task. The results demonstrate the po-

tential of our algorithm as a valuable approach for predicting acute kidney progress in randomized

trial, surpassing the performance of the previously established VilliaMLP model.

4 FUTURE PLAN

The first research problem is to find a representation for heterogeneous features for downstream

model and given task. The difficulty is how to combine the heterogeneous feature together to im-

prove the models’ performance. Our previous work showed the potential development of hetero-

geneous feature embedding modules for the given task. However, there are some limitation of our

work.

• First, the feature structure and instance structure is not considered in our model. If we

learned the sparse heterogeneous feature structure and utilize the distance of different data

points with heterogeneous features. The performance of our model may can be one of the

state-of-the-art for heterogeneous feature embedding.
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• Second, the computation of the structures cost too much times. How to find a more efficient

algorithm is another question.

• Third, we did not test the heterogeneous feature embedding modules for other backbone

models, such as diffusion model, transformers. There should be more datasets in our ex-

periment.

The second research problem is how to automatically infer the heterogeneous feature structures

for feature selection. Our preliminary work showed that potential improving space of prediction per-

formance. First, features can be heterogeneity data, such as different data scales (nominal, ordinal,

interval, ratio), different data sources (tabular, image, text) in the reality. Second, the features were

not all helpful for the given task and we should select some features and ignore others. In order

to solve this problem, we are planning to use Wasserstein distance to automatically learn the graph

structures between heterogeneous features:

• design a novel encoder to handle the heterogeneous features in a united space which support

sparse feature weighting for feature selection;

• balance the intra-attribute structures and inter-attribute structures;

• apply the graph theory to accelerate the computation.
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