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Background

e Causal Effect and Randomized Control Trail

 "Unknown potential yields" of Neyman’s agriculture experiment
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Background

* Limitation and Opportunity
* RCT can only give a population-level conclusion.
* RCT can not be performed due to immorality and high cost.
* Observational data upsurges.

* As an alternative, learning causal effects from the observational dataset is not
totally impossible.

Holland, P. W. (1986). Statistics and causal inference. Journal of the American statistical Association, 81(396), 945-960.



Background
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Application

Persuadables Sure things
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Yang, Mengyue, et al. "Causalvae: Disentangled representation learning via neural structural causal models." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.
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Problem and Challenge

* Open Problem: Learning causal effects from observational data

* Challenge:
* Hidden confounding
* High dimensionality
* Robustness



Challenge 1: Hidden confounding

* Treatment assignment 1s unknown and not randomized in observation
data. We can not 1dentify causal effects from observational data.
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Challenge 2: High dimensionality

* Potential dependency 1s exponential.
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* For example, the number of acyclic-directed mixed graphs is 0(
n! * 1.3"2) where n is the number of variables.
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Figure 1: Example of a proxy variable. t is a treatment, e.g. medication; y is an outcome, e.g.
mortality. Z is an unobserved confounder, e.g. socio-economic status; and X is noisy views on the
hidden confounder Z, say income in the last year and place of residence.



Challenge 3: Robustness

* What if the dependency relationship (structure and parameters) changed?

o.y \0.8 -0.3/ \0.9

§4¢ 0.7 4 06 2 848 0.6 9 0.6 ‘i‘
é —_— //"‘% —_— lﬁ\ ﬁ —_— f/"‘% —

Treatment Mediator Outcome Treatment Mediator Outcome

$os $ os

[ My : E(Y(W)) = Expeo(Ew(EYIW,X)) ] [ M, still work well? ] 10




Related works: Algorithm

[

Four Components

J

Counterfactual Imputation: impute the influence, such as loss value, of counterfactual data on our model.
Balancing Regularization: treatment group and control group are sampled from the same distribution.
Potential Outcome Prediction: learning potential outcomes prediction function for causal effect estimation.

Estimand Modeling: learning a function for the specific causal quantity that we want.

Table 1: Algorithms of causal effect learning from observation data. BLR/BNN: Shalit et al. (2017); TARNet/CFR-MMD/CFR-Wasserstein: Johansson et al.
(2016);Dargonet: Shi et al. (2019);X-learner: Kiinzel et al. (2019);CEVAE: Louizos et al. (2017);Deconfounder: Wang & Blei (2019);GANITE: Yoon et al.
(2018);SITE: |Yao et al. (2018);DRNets: Schwab et al. (2020); VCNets: Nie et al. (2021).

Algorithms Learning Stage | Counterfactual Imputation Balancing Regularization Potential Outcome Prediction | Estimand Modeling | Hidden Confounding
II;II\IAIR;J Two-stage Nearest Neighbor Moment’s Difference Neur{a‘lull\?:trwork None None
TARNet None
CIR-MMD : End-to-end Perfect Counterfactual MV " Twin Neural Networks None None
CFR-Wasserstein Wasserstein
Dargonnet CrossEntropy
X-Learner Three-stage Perfect Counterfactual None Twin BARTs Yes None
CEVAE End-to-End Perfect Counterfactual Bayesian Variational Inference Network Model Network None Proxy variables
Deconfounder Two-stage Perfect Counterfactual Posterior Predictive Check of Factor Model Linear None Proxy variables
GANITE Two-stage Counterfactual GAN None ITE GAN None None
SITE End-to-end PDDM Similarity Middle Point Distance Neural Network None None
DRNets . Treatment-Dose Networks
VCNets End-to-end Nearest Neighbor None Varying Coefficient Network None NOﬁ




Related works: Benchmark

Table 3: Causal Dataset. Causeme: 202; JustCause: Hawkins & Kim (2021); e-CARE: Du et al. (2022); IHDP: Hill (2011); News: Johansson et al. (2016); Twins:
Louizos et al. (2017); Jobs: Shalit et al. (2017); Movies: Wang & Blei (2019); GWAS: Song et al. (2015).

Type Name Introduction Website
Benchmark Causeme time-series https://causeme.uv.es/
Benchmark | JustCause support IHDP, ACIC etc. https://justcause.readthedocs.io/en/latest/
Benchmark e-CARE | reasoning and explanation for NLP https://scir-sp.github.io
Dataset IHDP home visits and IQ testing https://github.com/vdorie/npci
Dataset News New York Times corpus https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
Dataset Twins birth weight and mortality http://www.nber.org/data/linked-birth-infant-death-data-vital-statistics-data.html
Dataset Jobs labor earnings https://users.nber.org/ rdehejia/data/.nswdata3.html
Dataset Movies Movie income and stars https://www.kaggle.com/tmdb
Dataset GWAS genome-wide association studies https://github.com/StoreyLab/gcatest
Competition | ACIC 2022 conference challenge https://acic2022.mathematica.org/data
Competition | PCIC 2022 conference challenge https://pattern.swarma.org/pcic/competition.html

* Benchmarking Difficulty:
» Lacking randomized interventions and well-matched twins
» Counterfactual missing
» High deployment cost -



Related works: Dimensionality Reduction

Table 2: Dimensionality reduction assumptions. G: Gaussian; I: independent; nG: non-Gaussian;
1 : orthogonal; —: generate; ANN: additive normal noise; DAG: directed acyclic graph.

Method | Mapping p(z) p(x)
PCA Linear IG IG
ICA Linear InG InG+G
t-SNE | Nonlinear | Local continuty | Local continuty
BVAE | Nonlinear IG with 3 \
NGCA Linear GL1nG ANN
LinGAM Linear G—nG ANN with DAG




Related works: Toolbox

Table 4: Causal Packages. Tetrad: Ramsey et al.|(2018); CausalDiscoveryToolbox: Kalainathan & Goudet!(2019); Ananke: Nabi et al.| (2020}, Lee & Shpitser

(2020), Bhattacharya et al.|(2020); EconML: Keith Battocchil(2019); dowhy: Sharma et al.|(2019); causalml: Chen et al.|(2020); Causal-Curve: Kobrosly|(2020);
grf: Athey et al.|(2019); dosearch: Tikka et al.|(2021); causaleffect: Tikka & Karvanen|(2017); dagitty: Textor et al.|(2016).

Motivation Toolbox Support Team Introduction
CMU, DMIR,
Causal Learning causal-learn Gong Mingming team, python version of Tetrad
Shouhei Shimizu team
Tetrad CMU Java
CausalDiscoveryToolbox FenTechSolutions python, DAG/Pair, dataset, independence, structure learning, metrics
gCastle Huawei Noah python, data generation and process, causal structure learning, metrics
tigramite Jakob Runge python, learning from time-series data
Causal Reasoning Ananke Ilya Shpitser team python, support do-calculus
EconML Microsoft python, Econometrics
dowhy Microsoft python
causalml Uber python, campaign target optimization, personalized engagement
Causallmpact Google R, time-series, adertisement and click
WhyNot John Miller python, simulator and environment
Causal-Curve Kobrosly, R.W. python, continuous variable such as price, time and income
grf grf-lab of Standford R
dosearch Santtu Tikka R
causaleffect Santtu Tikka R
dagitty R, support adjustment formula
End-to-End causalnex QuantumBlack python, 0.11.1, structure learning, domain knowledge, estimation
Y-learn CSDN python, June 2022

14



Our Preliminary works

* Open Package: Identification and Structural Causal Model
* A Rejected Paper (UAI 2022 January): OOD Robustness



Our Preliminary works: Open Package
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Our Preliminary works: Robustness

* Novelty: introduce auto identification .
into causal effect estimation. Weg B swe - The left column 1s

< train data, and the right
@ - o column is test data.
- Yellow and purple

e ° s o] «# | indicate smoking or
. not.
@ * X; and X, are variable

= . DandB.Y is variabl
Figure 1: Example of four variables. D means dopamine; B means senior brain activity (frontal TM = , ¢ ,Mz' & an * ls Varla e

J S}
lobe); G means unobserved gene/physique; E means social environment not easy to measure. S ra 2 s

means smoking behaviour, and C means cancer. For example, E — D may represent some life === 7 . ) ‘
pressures, and E — S may be unconscious mimic nature.

* In our simulation, we want to calculate the causal effect of smoking on cancer.

* We use p(c|do(s)) = Z§ p;(alZl))I;IE?;TIngl)?)
for all individuals. b '

and maximum likelihood to estimate E (c|do(s))



Our Preliminary works: Robustness

* In unbiasedness testing, estimations after identification are more unbiased than MR Freedman
(2008) and INT Lin (2013) from ATE estimation results in both discrete and continuous cases.
Considering estimation variance, it got better performance when outer mechanisms (dashed
line) are changed. 18



Our Approach to Address Challenges

* Hidden Confounding: Individual Diagram

* Novelty: Will be the first to learn Individual Structural Causal Model
for causal effect estimation.

" o) o o7\ Diagrams often assume non-
é Y é—» Y parametric dependency among
variables for all units.
® S But different units may have different
n dependencies and parameters.




Our Approach to Address Challenges

* High Dimensionality:
* Balancing Representation

* Variables Grouping (the dependencies between variables within each group can
be learned separately)

* Multi Diagram Identification
* Model Learning

* Novelty: The dependency among variables will be simplified by
representation learning and variable grouping while preserving causal
effect estimation performance.



Our Approach to Address Challenges

* Robustness:
* Use multi-head techniques in the diagram identification stage to improve
robustness for causal effect learning

* Novelty: Will be the first to introduce multi-head 1dentification
modules in causal effect learning.
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Futural plan

Table 5: Ph.D. Program Timeline with Publication Goals

Year Activities
1 Coursework, literature review, research proposal
2 Data collection, preliminary analysis, conference paper 1, conference presentation, QE
3 Advanced analysis, paper writing, conference paper 2, journal paper, Candidature
4 Finalize dissertation, defend dissertation, conference paper 3, graduation

22




Thanks!



IHDP (semi-synthetic)

* The causal effect of a
home visit on IQ test
result

I'use experimental data from the Infant Health and Development Program (IHDP), a ran-
domized experiment that began in 1985, targeted low-birth-weight, premature infants, and
provided the treatment group with both intensive high-quality child care and home visits
from a trained provider. The program was highly successful at significantly raising cog-
nitive test scores of the treated children relative to controls at the end of the intervention
(Brooks-Gunn, Liaw, and Klebanov 1991). The study collected data on many pretreatment
variables. I use _birth weight, head circumference, weeks born
preterm, birth order, first born, neonatal health index (see Scott and Bauer 1989), sex, twin
status—as well as _smoked cigarettes, drank
alcohol, took drugs—and [iCASURCHIGHS 0N the MOtEr At the time shie gave birih —age.

marital status, educational attainment (did not graduate from high school, graduated from
high school, attended some college but did not graduate, graduated from college), whether
she worked during pregnancy, whether she received prenatal care—and _

There are 6 continuous covariates

and 19 binary covariates.

24



Twins

e The causal effect of
birth weight on
mortality

We introduce a new benchmark task that utilizes data from twin births in the USA between 1989-1991
[3]]°. The treatment t = 1 is being born the heavier twin whereas, the outcome corresponds to the
mortality of each of the twins in their first year of life. Since we have records for both twins, their
outcomes could be considered as the two potential outcomes with respect to the treatment of being
born heavier. We only chose twins which are the same sex. Since the outcome is thankfully quite
rare (3.5% first-year mortality), we further focused on twins such that both were born weighing less
than 2kg. We thus have a dataset of 11984 pairs of twins. The mortality rate for the lighter twin is
18.9%, and for the heavier 16.4%, for an average treatment effect of —2.5%. For each twin-pair we
obtained 46 covariates relating to the parents, the pregnancy and birth: mother and father education,
marital status, race and residence; number of previous births; pregnancy risk factors such as diabetes,
renal disease, smoking and alcohol use; quality of care during pregnancy; whether the birth was at a
hospital, clinic or home; and number of gestation weeks prior to birth.

In this setting, for each twin pair we observed both the case t = 0 (lighter twin) and t = 1 (heavier
twin). In order to simulate an observational study, we selectively hide one of the two twins; if
we were to choose at random this would be akin to a randomized trial. In order to simulate the
case of hidden confounding with proxies, we based the treatment assignment on a single variable
which is highly correlated with the outcome: GESTAT10, the number of gestation weeks prior to
birth. It is ordinal with values from 0 to 9 indicating birth before 20 weeks gestation, birth after
20-27 weeks of gestation and so on We then set t;|x;,z; ~ Bern (o(w, x + wp(z/10 — 0.1))),
w, ~ N(0,0.1- 1), wp, ~ N(5,0.1), where z is GESTAT10 and x are the 45 other features.
25



TARNet

* Model
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Figure 1. Neural network architecture for ITE estimation. L is
a loss function, IPM¢ is an integral probability metric. Note that
only one of hg and h; is updated for each sample during training.
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: t; 1—t 1
with  w; = 3% + STEEnE where u =" t;,

and R is a model complexity term. 3)

Note that v = p(t = 1) is simply the proportion of treated
units in the population. The weights w; compensate for the
difference in treatment group size in our sample, see The-
orem 1. IPMg(-,-) is the (empirical) integral probability
metric w.r.t. G. For most IPMs, we cannot compute the
factor By in (2), but treat it as part of the hyperparameter
a. This makes our objective sensitive to the scaling of ®,
even for a constant a. We therefore normalize ® through

26
either projection or batch-normalization with fixed scale.



CEVAE

* Model P(x) aylt=0x)  q(zit=0,y,%)

q(tlx) q(ylt=1,x) q(zlt=1,y,x) p(tiz)
(a) Inference network, q(z, t, y|x). (b) Model network, p(x, z, t, y).

p(xiz)

p(ylt=0,2)

p(ylt=1,2)

Figure 2: Overall architecture of the model and inference networks for the Causal Effect Variational
Autoencoder (CEVAE). White nodes correspond to parametrized deterministic neural network transi-
tions, gray nodes correspond to drawing samples from the respective distribution and white circles
correspond to switching paths according to the treatment ¢.
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* Loss L= ZEq(zi|xi,ti,yi)[logp(xiat’i|zi) + log p(y:lti, ;) + log p(z;) — log q(:|xi, ts,ys)].  (6)
=1

N
Feevae = L+ ) (logq(ti =t;|x]) + logq(yi = y;x}, 1)), (10)

i=1
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