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ABSTRACT

Learning causal effects from high-dimensional observation data is critical for

many realistic applications. The main challenge of causal effect estimation is

the confounding problem, which includes both measured and unmeasured con-

founding, especially in high-dimensional data. In this survey, we have explored

various frameworks, objectives, metrics, approaches, datasets, and packages for

causal effect learning from observation data. We have also shared our preliminary

work and future plans for learning causal effects from high-dimensional obser-

vation data. By addressing the confounding problem in causal effect estimation,

we can develop better models and algorithms to uncover causal relationships and

make more accurate predictions and decisions in real-world scenarios.

1 BACKGROUND

1.1 INTRODUCTION

The estimation of causal effects from observational data is a significant goal in numerous prac-

tical applications, including clinical data analysis, medical report assistance, uplift marketing, and

AI robustness. This endeavor is aimed at addressing critical questions such as ”Would the patient’s

oxygen saturation have normalized without treatment?” ”What should a physician include in the

report if the patient had no lung opacity?” ”How can one estimate the lift in a user’s purchase inten-

tion due to an advertisement?” and ”How will an AI perform in the face of environmental changes?”

Answering these questions is non-trivial, even in low-dimensional cases, due to the confounding

problem. This problem arises from that the same observation may be generated by multiple gen-

erative models, leading to different estimations of causal effects. The confounding may stem from

the fact that treatment assignment is not randomized in observation data, as is the case in random-

1



HKBU QE Survey

ized control experiments (RCTs) Holland (1986). Alternatively, the confounding may arise from

the existence of common causes between treatment and outcome, as described by Reichenbach’s

common cause principle Hofer-Szabó et al. (2013). Therefore, identifying the most effective model

for estimating causal effects is crucial for mitigating the confounding problem. Failing to do so may

lead to spurious correlations induced by confounders that do not contribute to the causal effect.

In recent years, significant progress has been made in learning causal effect from high dimensional

observation data, due in part to the advancement of artificial neural networks and the use of GPU

technology. For instance, the Causal Effect Variational Autoencoder (CEVAE) Louizos et al. (2017)

leverages a graphical prior to learn a latent confounder from a variational lower bound. It has

the ability to learn a latent confounder from high dimensional covariates. Deconfounder Wang

& Blei (2019) and Time Series Deconfounder Bica et al. (2020) use a (time-series) factor model to

predict individual treatment assignment from a confounder and covariate, and subsequently estimate

treatment effect using an outcome model. These approaches are useful for dealing with multiple

treatments. However, the current approaches have limitations.

Recent works in causal effect learning can be broadly categorized into two types based on the

stage of the causal effect estimation process. The first type, imputation methods, focus on imputing

missing values in the data to estimate the causal effect. The second type, dependency methods,

rely on modeling the dependency relationships between the treatment, covariates, and outcome to

estimate the causal effect.

Imputation approaches consist of four stages, namely counterfactual imputation, balancing rep-

resentation, learning potential outcome, and learning causal effect. The counterfactual imputation

stage is the most important step in these methods as it provides the source of counterfactual knowl-

edge, even though it is often implicit. Balancing representation involves ensuring that units in the

treatment group and control group are sampled from the same distribution to avoid confounding

induced by observed variables. The potential outcome model is used to predict potential outcomes,

and the treatment effect model is used to predict the causal effect. Counterfactual data is imputed by

matching before learning.

For example, the Balancing Neural Network (BNN) Johansson et al. (2016) is a two-step model

that imputes counterfactual data using the nearest neighbor that was assigned the opposite treatment

in the covariate space. The model first learns a balanced representation with a loss function that

includes factual error, counterfactual error, and a discrepancy distance. The second step is to learn a

linear function that predicts factual outcome and counterfactual outcome from the representation and

treatment. On the other hand, the Treatment Agnostic Representation Network (TARNet) Shalit et al.

2



HKBU QE Survey

(2017) is an end-to-end model that does not need nearest neighbor matching in the covariate space.

It uses twin neural networks with different parameters to model the treated and control outcomes,

respectively. The Counterfactual Regression (CFR) adds an integral probability metric (IPM), such

as Wasserstein and Maximum Mean Discrepancy (MMD) distances, for balancing representation

between the treated and control groups. Unlike T-learners, the X-learner Künzel et al. (2019) does

not learn a balanced representation. Instead, it assumes perfect imputing and learns two Bayesian

additive regression trees (BART) as potential outcome models. It computes imputed treatment effect

for two linear causal effect models and weighs them using covariates.

However, one limitation of these approaches is that they assume that all confounders have been

observed, which may not be true in reality.

The second class of causal inference methods is based on dependencies among variables. These

methods typically involve four stages: assuming a causal diagram, abduction, action, and prediction.

Counterfactual knowledge in these methods comes from the causal diagram, which specifies the

relationships among observed and unobserved variables.

For instance, CEVAE Louizos et al. (2017) is an end-to-end model that uses variational methods.

It begins by assuming a causal diagram for the data-generating process. It then uses all observation

data to approximate a posterior distribution of the latent variables. Next, it applies do-calculus on

the causal diagram to factorize the conditional average treatment effect query into a distribution of

all variables, including the latent variables, to avoid confounding problems. Finally, it uses a neural

network to learn the factorized distributions to predict potential outcomes. Deconfounder Wang

& Blei (2019) is designed to handle multiple treatments. It is a two-stage model that assumes no

single common cause between treatments and outcomes. It then uses treatment data to approximate

a posterior distribution of proxy variables that ensure that every treatment is independent of the

others when conditioned on the proxy variable. If such proxy variables can be found, then hidden

confounders can be proven not to exist. Finally, the model uses the proxy variable and treatment

to predict the potential outcomes. Time-series deconfounder Bica et al. (2020) is a time-series

extension of deconfounder.

However, a limitation of these methods is that the causal diagram (i.e., the dependencies among

variables) can be misspecified without careful censorship by domain experts. Additionally, learning

the hidden variable from data can be time-consuming, making it difficult to learn a causal diagram

for high-dimensional data.
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Our interested research problem is how to learn causal effect effectively and efficiently from

high dimensional observation data with hidden confounding. We are interested in the acceleration

approaches for dependency methods because it takes hidden confounding into consideration. We

are facing those challenges.

A key challenge in causal effect learning is dealing with unmeasured confounding, which arises

when individuals do not share the same causal diagram and parameters. To address this problem, we

plan to classify diagrams into do-equivalent classes and learn parameters separately. We will then

develop an individual measurement function to improve the prediction of potential outcomes. The

individual fusion function will integrate the learning models for potential outcome prediction. We

propose two schemes to approach the function learning problem: the first involves treating function

learning as a classification problem, while the second treats it as a module of previous models,

allowing us to build an end-to-end model. Notably, we will be the first to learn an individual SCM

for causal effect estimation.

The second major challenge we aim to tackle is high dimensional data. Many existing approaches

rely on a sparse graph structure assumption, which may not hold for high dimensional data due to

the exponentially large number of possible relationships. To address this, we propose a clustering

method to group variables into limited clusters with specific constraints. Next, we use identification

algorithms to calculate all possible identification results among the clusters. We then learn several

models based on these identification results and finally, a fusion model to predict potential outcomes

and causal effects. We also plan to incorporate counterfactual loss methods to train the model

without directly inferring counterfactual data. The end-to-end model can combine these approaches

for efficient causal effect estimation on high dimensional data. Our proposed approach is novel

in that it utilizes a combination of clustering, identification algorithms, and counterfactual loss to

address the challenges of high dimensional data in causal effect learning.

The third challenge in causal effect estimation is the ability to generalize beyond the observed data

distribution. Often, machine learning models are trained on a specific dataset, assuming that the test

data will be drawn from the same distribution as the training data. However, in the context of causal

effect estimation, the observed data distribution may not represent the entire population or may

be influenced by unobserved confounding variables and parameters changes. As a result, models

trained on such data may fail to generalize to out-of-distribution data, leading to biased causal effect

estimates. Addressing this challenge requires developing methods to identify and handle distribution

shifts and unobserved confounding variables, as well as evaluating the model’s performance on

unseen data to ensure reliable generalization.
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1.2 APPLICATIONS

High-dimensional causal effect estimation from observational data has critical applications in

practice. This survey introduces some valuable applications related to high-dimensional causal effect

estimation from observational data.

1.2.1 MEDICAL REPORT ASSISTANCE

In medical report generation, deep learning models are often trained on real-world reports, such as

MIMIC-CXR Johnson et al. (2019a;b). Therefore, their outputs may contain hallucinated references

to non-existent priors for an individual. If we regard patients’ chest features, such as lung opacity,

as treatment and clinic reports as outcome, with chest X-rays as covariate set, we can maximize the

causal effect of chest features on the report under consistency constraints, rather than simply fitting

a model for factual prediction performance.

1.2.2 UPLIFT MARKETING

In uplift marketing tasks, our aim is to maximize profits with limited advertising or recommen-

dations, rather than simply predicting whether customers or users are interested in certain products.

The metric that the company cares about is how much the promotion of products increases the com-

pany’s income.

1.2.3 SELF-DRIVING ASSISTANCE

In self-driving assistance, the counterfactual outcome is almost always missing because a driver

only has one life. However, it is critical for the model to understand the consequences of an action

shown in an image, such as pressing the accelerator with high speed towards a tree.

1.2.4 BROAD-SPECTRUM ANTIVIRAL DRUG DISCOVERY

Due to the variety and variation of viruses and the heterogeneity of populations, randomization

is not efficient enough for drug discovery. The combination of viruses, potential drugs, and indi-

viduals’ attributes is exponential. If we can combine electronic health records of individuals and

experimental results in the laboratory, it can make drug discovery more efficient.
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2 PRELIMINARIES

2.1 FRAMEWORKS

Frameworks are fundamental for understanding the problem of causal effect learning. Two com-

petitive frameworks, potential outcome and structural causal model, do not have overwhelming ad-

vantages over each other.

2.1.1 POTENTIAL OUTCOME

In 1923, Neyman published his paper Neyman (1923), but it was not translated into English until

1990 Splawa-Neyman et al. (1990). He used the term ”unknown potential yield” to indicate the

missing ”potential outcome” in his randomization experiment for evaluating crop varieties. The

Rubin causal model was named by Holland in 1986 Holland (1986).

In the Rubin causal model, the first step is to define the interested estimand (potential outcome)

and then design the assignment mechanism before outcomes are measured. Then, a model is built

to analyze the data.

There are some basic assumptions in the potential outcome framework. The Stable Unit Treat-

ment Value Assumption (SUTVA) Rubin (1980) states that units/individuals/samples should be in-

dependent of each other, and the treatment effect for an individual is stable. Strong ignorability

Rosenbaum & Rubin (1984) means that treatment assignment probability should be positive for

every treatment value and every individual, and the assignment mechanism should be independent

of potential outcomes. Consistency requires that subjects’ response for a specific treatment in an

experimental study is the same as the outcome in an observational study.

Recently, people are trying to find weaker assumptions of strong ignorability, such as single strong

ignorability Wang & Blei (2019) D’Amour (2019) and sequential single strong ignorability Bica

et al. (2020). These assumptions require the number of treatments to be more than one and assume

the non-existence of multi-cause hidden confounders.

Other works focus on sensitivity analysis of causal inference to provide confidence intervals

Franks et al. (2019). For example, Rosenbaum’s sensitivity parameter Rosenbaum (1987) Γ and

Bahadur’s Bahadur (1971) efficiency were proposed. They try to separate the analysis of exogenous

factors from the models.
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2.1.2 STRUCTURAL CAUSAL MODEL

The Structural Causal Model (SCM) Pearl (2009) can be seen as a simplified world model. Esti-

mating causal effect is its by-product. It requires the generation of both factual and counterfactual

data for all units that share one SCM. In the SCM, we have two kinds of variables for a unit: ob-

served variables and unobserved variables that are outside the observed variable list. The key of

the SCM is that it assumes that we completely know how the data of a variable (both observed and

unobserved) for a unit is generated. Because all units share an SCM, we know the list of variables

Parent(X) that an observed variable X depends on and the list of observed variables Child(X)

that depend on X for every unit. For a unit u, the randomness of its observed variables is from the

randomness of unobserved variables; the unobserved variables should be measurable so that they

can be represented by a distribution.

Also, the concrete generating function of all observed variables and the concrete distribution of

the unobserved variable should be given. The requirement of the SCM is too strict, and it is proven

almost impossible to learn an SCM from observational data Xia et al. (2021b) if all generating

functions of an SCM can be represented by neural networks and unmeasured variables that can be

represented by uniform distributions. Although the unobserved confounding problem can be solved

efficiently given a SCM, it is clearly a waste and not realistic to learn such a world model for causal

effect estimation because many SCMs can produce the same causal effect estimation.

2.2 BASIC NOTATIONS

Definition 1 Unit. A unit is the object/individual that no isomorphism exists among its subsets in

and after the observation study.

A unit can be a patient, a customer, an individual, a subject, a physical object, or a measurable

concept. We denote a unit as u, a unit variable as U , a unit set as u, a unit variable set as U.

Definition 2 Observation. An observation is the data of measurement for a unit in the observation

study.

Definition 3 Outcome. An outcome is the attribute set of unit we want to understand, to control, to

intervene, or to change after the observation study.

We denote an outcome as y, an outcome variable as Y , an outcome set as y, an outcome variable set

as Y.

Definition 4 Treatment/Intervention. Treatment is the action set that we want to take on the unit to

intervene the outcome for certain purpose after the observation study.
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We denote an treatment as t, an treatment variable as T , an treatment set as t, an treatment variable

set as T.

Definition 5 Potential Outcome. For each treatment given a unit, the outcome that will be observed

after the treatment assignment is called potential outcome.

We denote a potential outcome for outcome Y with treatment T = t as Y (T = t) where potential

outcome Y (T = t) is also a variable.

Definition 6 Observed outcome. For an observation given a unit with assigned treatment, the out-

come in the observation study is called observed outcome.

Definition 7 Counterfactual outcome. For an observation given a unit with assigned treatment, the

outcome if the unit had taken a different treatment in the observation study is called counterfactual

outcome.

The total number of observed outcome and counterfactual outcome given a unit equals the number

of potential outcome of this unit. For binary treatment in the observation study, if T = 1 for a unit

u then the observed outcome is Y (T = 1)|u and the counterfactual outcome is Y (T = 0)|u.

Definition 8 Covariate. For a unit with assigned treatment, if an attribute set has no intersection

with treatment and outcome, then it is called covariate.

Definition 9 Pre-treatment covariate. For a unit with assigned treatment, the covariate that does

not depend on treatment is called pre-treatment covariate.

Definition 10 Post-treatment covariate. For a unit with assigned treatment, the covariate that de-

pended on treatment is called post-treatment covariate.

When referring to covariates, unless otherwise specified, we assume that they are pre-treatment

covariates. It is worth noting that pre-treatment is a property of data generation, rather than a se-

quence of data measurement. For instance, some attributes may have been measured after the treat-

ment but generated before it. Conversely, just because data was measured before the treatment does

not mean that the variable it represents was generated before the treatment. This is because there

may exist two identical attributes, one measured before and the other after the treatment, which do

not change in this study, such as height and age. Therefore, we need to be mindful of the distinction

between data measurement and data generation when considering the timing of covariates.
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2.3 BASIC OBJECTIVE

For the task of estimating causal effects, we are interested in the following quantities, which we

refer to as ”estimands” rather than ”estimates” because their definitions are based on counterfactual

outcomes. In the following basic objective, we assume that X ∩ Y = T ∩ Y = X ∩ T = ∅ and that

treatment is binary. The definitions of these objectives from the individual level to the group level

and population level are as follows:

Definition 11 Individual treatment effect (ITE). For unit i,

ITE(i) ≜ Yi(T = 1)− Yi(T = 0) (1)

Definition 12 Conditional Average Treatment Effect (CATE). For units i ∈ U ,

CATE(U) ≜ Ei∈U (Yi(T = 1)− Yi(T = 0)|Xi = xi)

≜ E(Y (1)− Y (0)|X)
(2)

Definition 13 Conditional Average Treatment effect on the Treated group (CATT) Angrist & Imbens

(1995). For units i ∈ Ut with Ti = 1,

CATT (Ut) ≜ Ei∈Ut
(Yi(T = 1)− Yi(T = 0)|Xi = xi)

≜ E(Y (1)− Y (0)|X,T = 1)
(3)

Definition 14 Conditional Average Treatment effect on the Control group (CATC). For units i ∈ Uc

with Ti = 0,

CATC(Uc) ≜ Ei∈Uc
(Yi(T = 1)− Yi(T = 0)|Xi = xi)

≜ E(Y (1)− Y (0)|X,T = 0)
(4)

Definition 15 (Population) Average Treatment Effect (ATE/PATE). For units u ∈ U ,

ATE(U) ≜ Ei∈U (Yi(T = 1)− Yi(T = 0))

≜ E(Y (1)− Y (0))
(5)

Definition 16 (Population) Average Treatment Effect on the Treated group (ATT/PATT). For units

i ∈ U with Ti = 1,

ATT (Ut) ≜ Ei∈Ut
(Yi(T = 1)− Yi(T = 0))

≜ E(Y (1)− Y (0)|T = 1)
(6)
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Definition 17 (Population) Average Treatment Effect on the Control group (ATC/PATC). For units

i ∈ U with Ti = 0,

ATC(Uc) ≜ Ei∈Uc(Yi(T = 1)− Yi(T = 0))

≜ E(Y (1)− Y (0)|T = 0)
(7)

2.4 BASIC MATRICS

Definition 18 Precision in Estimation of Heterogeneous Effects (PEHE) Hill (2011). For units

i ∈ U and estimator τ̃(Yi(1)− Yi(0)|Xi),

PEHE(U , τ̃) ≜ Ei∈U (||τ̄i − τ̃i||2)

≜ στ̃ (Y (1)− Y (0)|X)
(8)

where τ̄i = Efi(Yi(1)− Yi(0)|Xi) and fi is the sampling function of unit i, and τ̃i is the estimated

CATE of unit i.

Definition 19 Precision in Estimation of Heterogeneous effects on the Treated group (PEHT). For

units i ∈ Ut with Ti = 1 and and estimator τ̃(Yi(1)− Yi(0)|Xi, Ti = 1),

PEHT (Ut, τ̃) ≜ Ei∈Ut(||τ̄i − τ̃i||2)

≜ στ̃ (Y (1)− Y (0)|X,T = 1)
(9)

where τ̄i = Efi(Yi(1) − Yi(0)|Xi, Ti = 1) and fi is the sampling function of unit i, and τ̃i is the

estimated CATT of unit i.

Definition 20 Precision in Estimation of Heterogeneous effects on the Control group (PEHC). For

units i ∈ Uc with Ti = 0 and and estimator τ̃(Yi(1)− Yi(0)|Xi, Ti = 0),

PEHC(Uc, τ̃) ≜ Ei∈Uc
(||τ̄i − τ̃i||2)

≜ στ̃ (Y (1)− Y (0)|X,T = 0)
(10)

where τ̄i = Efi(Yi(1) − Yi(0)|Xi, Ti = 0) and fi is the sampling function of unit i, and τ̃i is the

estimated CATC of unit i.

2.5 LEARNING CAUSAL EFFECT FORM HIGH-DIMENSIONAL DATA

In machine learning, we care about the effectiveness and efficiency of our causal model (causal

estimator) for high dimensional data.
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The main differences between a causal model and traditional predictive model is that the missing

of counterfactual outcome is inevitable in both training and validation procedures but counterfactual

outcome is indispensable in testing procedures. In the training and validation procedure, we can use

data of covariate, treatment, and factual outcome of units for model learning. In the testing proce-

dure, the missing counterfactual outcome is well-defined and valuable because the unit could have

been assigned to a different treatment policy rather than a predestinate policy due to randomization

of treatment, subjective initiative of unit, and inaccessibility of deterministic predictive model of

treatment assignment.

In this report, the meaning of high dimensional causal effect estimation is: the dimension of

outcome is larger than 100, the potential treatment assignment is larger than 100, the dimension of

covariate is larger than 1000. In order to extend the basic objective for binary treatment to high

dimensional cases while remaining the essential properties, the definition and objective of causal

effect for machine learning will be reconsidered in this part. We hope machine’s response for causal

effect estimation is consistent with reality as much as possible after learning from the observation

data and performing the recommend actions.

Definition 21 Counterfactual imputation. Given factual observations (ti, Yi(t), xi) of un
i=1, the

task to impute counterfactual outcome Yi(Ti/ti) is called counterfactual imputation where Ti/ti is

other potential treatments that ui could have been assigned to.

We remark that counterfactual imputation is an unsupervised task because counterfactual outcome

can never been observed in both train dataset and validation dataset. The counterfactual imputation

task is the fundamental challenge of causal inference.

Definition 22 Generalized Individual Treatment Effect. For unit i with multiple treatment, the treat-

ment effect of treatment ti is

GITE = Yi(ti)− E(Yi(Ti/ti)) (11)

The definition of GITE is based on such consideration. It may be controversial to image all

potential treatments and their potential outcomes of an observation. And it is also meaningless to

list all possible treatments and potential outcomes of this observation because the same observation

will seldom be observed after the observation study. However, it seems spontaneously for us to

image expectation of potential outcomes of other different treatments for a certain observation of a

unit. Other targets of causal effect can be extended to high dimensions following similar way and

those definitions are very useful.
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The first case is model learning. Given generative model of outcome and treatment, it is rea-

sonable to maximize the GITE which is constrained by observation consistency because we know

that most treatment actions in ICU are decided by experienced and knowledgeable doctors and our

model is obviously not as good as doctor at the start of learning.

The second case is optimal treatment discovery. If we want to find the optimal treatment to

maximize the outcome, we could search the treatment with maximum GITE. Also, we can minimize

the GITE by treatment assignment model’s parameters and chose treatment with maximum GITE.

3 RELATED WORKS

The primary challenge in estimating causal effects is the confounding problem, which can arise

from both observed and unobserved variables or mechanisms. In this survey, we assume that treat-

ment assignment is probabilistic and individualistic Imbens & Rubin (2015).

To address the issue of confounding, the unconfoundedness (ignorability) assumption is often

used, which assumes that there are no hidden confounding variables. We can divide causal learn-

ing approaches into two categories based on whether they make this assumption or not. However,

the presence of hidden confounding can affect the performance of algorithms that assume uncon-

foundedness. The performance of causal learning algorithms depends on several factors, including

the learning stage, counterfactual imputation, balancing regularization, potential outcome predic-

tion, estimand modeling, and the presence of hidden confounding. These factors are summarized in

Table 1.
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3.1 OBSERVED CONFOUNDING

To address observed confounding, many causal effect learning approaches rely on the uncon-

foundedness assumption Imbens & Rubin (2015). This assumption implies that the treatment as-

signment ti is independent of the potential outcomes (Yi(ti), Yi(T /ti)), given the covariates Xi.

However, the fundamental difficulty of observed confounding is that a unit with treatment can be

measured only once, so the ratio of missing counterfactual data is inevitably very high (at least

50%), as compared to standard regression tasks. This makes it challenging to estimate the causal

effect accurately.

3.1.1 COUNTERFACTUAL IMPUTATION

In the context of causal effect estimation, comparing identical individuals/units with different

treatments is an intuitive idea to estimate causal effect, but it is almost impossible to find exact

matches due to the exponential requirement of units with the increase of covariates’ dimensionality.

Balancing is an alternative approach based on randomization, which does not require identical

units with different treatments. It is based on the fact that for a certain deviation tolerance of the

treatment effect (or fixed deviation tolerance of covariates), the probability to reject the match is

exponentially decreasing with the number of units in each group with different treatments if all units

were sampled from the same distribution (Gaussian and sub-Gaussian) and assigned to different

treatment groups randomly Rosenbaum & Rubin (2022).

To simulate the randomness of treatment assignment, a balancing score b(X) is used to make no

significant difference between the covariates of the treatment and control groups. A balancing score

is any function that satisfies ∀x(t ⊥ x|b(x)). As a consequence, Pr(x|t1, b(x)) = Pr(x|t2, b(x))

and Pr(t|x1, b(x1)) = Pr(t|x2, b(x2)), where b(x1) = b(x2). Examples of balancing scores

include exact matching (b(x) = x), propensity score matching (b(x) = Pr(t|x)), and principal

unobserved covariate matching (b(x) = Pr(t|x,Y(t))) Rosenbaum & Rubin (1983).

Regardless of the balancing score used for matching, we use the matched unit’s observed outcome,

which has a different treatment but the same balancing score, to impute the counterfactual outcome

of the current unit because the difference in outcomes between those matched units is only from the

source of treatment assignment probability’s randomness.

Re-weighting can be seen as a method to achieve the same balancing score for units with different

treatment groups. For example, Inverse Probability of Treatment Weighting (IPTW) Rosenbaum &

Rubin (1983) first uses the propensity score as the initial balancing score for all units. Then IPTW
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uses a re-weighting function to create a new balancing score for different treatment groups, which

forces those groups to have the same balancing score. Finally, Average Treatment Effect (ATE) can

be computed by IPTW.

Stratification can be seen as a method to achieve the same balancing score with both different

treatment groups and similar covariates. For example, the equal frequency approach Rosenbaum

& Rubin (1983) splits the sub-groups by propensity score. It can be used to compute Conditional

Average Treatment Effect (CATE).

Recent works focus on learning low-dimensional balancing representations and distribution dis-

tance metrics by neural networks Clivio et al. (2022) Wang et al. (2021) rather than probabilities

whose dimension is the same as the number of treatment assignments.

3.1.2 ESTIMAND MODELING

In causal inference, an estimand is a parameter that describes the causal effect of a treatment

on an outcome. Common examples of estimands include the average treatment effect (ATE) and

the conditional average treatment effect (CATE). While these parameters can be estimated using

individual counterfactual predictions, it is often more efficient to build a model that directly estimates

the estimand.

For example, in the CATE estimation problem with binary treatment, several approaches have

been proposed to model the estimand. S-learner learns a single model that takes both the treatment

assignment and the covariates as input and predicts the outcome. T-learner learns two separate

models for the treatment and control groups and uses them to estimate the difference in outcomes.

X-learner Künzel et al. (2019) is a more flexible approach that builds an estimand model to handle

unbalanced treatment assignment. It learns two outcome models for the treatment and control groups

and then calculates two imputed treatment effects from the observed and counterfactual outcomes.

The two imputed treatment effects are then weighted and combined using a chosen weight function

Kallus (2020), such as the propensity score, to produce an estimate of the CATE.

The performance of these meta-learners depends heavily on the choice of base models. In practice,

tree-based models such as Bayesian Additive Regression Trees (BART) Chipman et al. (2010) have

been found to work well. Estimand modeling is a powerful approach to estimating causal effects, and

its use is becoming increasingly popular in the machine learning and causal inference communities.
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3.2 UNOBSERVED CONFOUNDING

In reality, it is impossible to collect data on all background variables and even define them well

sometimes. As a result, unobserved confounding is not a rare occurrence; it is a common phe-

nomenon and sometimes we may be more confident in the existence of hidden confounders than in

the family of data generating functions or distributions. For example, patients’ mental state, social

status, and doctors’ knowledge may all be unobserved confounders.

3.2.1 IDENTIFICATION AND APPROXIMATION

Causal effect identification can transform the query about the interested effect to operational inter-

vention and observable observation even when hidden confounding exists. If the causal effect is not

identifiable, then approximation methods can be used to get a bound on the causal effect. These ap-

proximation methods can be regarded as a fast inference tool for Structural Causal Models (SCMs).

The precondition of such approaches is that the real data generating procedure can be represented by

our presumed SCM. The limitation of such approaches is the learning difficulty of SCM Xia et al.

(2021b).

Identification formulas for causal diagrams were developed in the last 30 years based on the

definition of Pearl’s structural causal model. Back-door adjustment, front-door adjustment, and do-

calculus for Directed Acyclic Graphs (DAGs) were named, and the proof of those theorems was

given in Pearl (1993) and Pearl (1995). However, the approach of such identification does not

consider unobservable confounders or automatic identification algorithms, and the completeness of

such identification methods was also not given. In 2002, Tian & Pearl (2002) proposed a complete

criterion ”c-factorization” for singleton treatment and singleton outcome. Huang & Valtorta (2006)

and Shpitser & Pearl (2006a) proposed complete identification algorithms (Huang’s algorithm and

Shpiser’s ID algorithm) to transform causal effect queries without condition variables into functions

of observation distribution automatically for multiple treatments and outcomes in Bayesian networks

with hidden variables and semi-Markovian models, respectively. And Shpitser & Pearl (2006b)

proposed the IDC algorithm for causal effect queries with condition and proved the completeness.

However, all these identification methods do not consider the undirected edges (stable symmetric

relationships). In 2019, Sherman & Shpitser (2018) proposed a complete identification algorithm

for segregated graphs to address such patterns. There are also other identification algorithms for

causal diagrams with loops Forré & Mooij (2020).

However, it is also meaningful to not assume that any intervention on those variables is impossible

after observational studies because active intervention will introduce information that observation

cannot provide. Bareinboim & Pearl (2012) defined z-identifiability and proposed the complete IDz
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algorithm to address the problem that any combination of experiments on Z can be performed, and

observable distribution is known for queries without condition variables. Lee et al. (2019) defined

g-identifiability and proposed the gID algorithm. It can factorize the original causal effect query

into the expression of intervention distribution of Z, and it does not need any observational data.

Recently, researchers have begun to notice that solving the identification problem in SCM (struc-

ture causal model) directly is not the only way. Lee & Bareinboim (2021) revealed the connection

between matrix theory and traditional identification and proposed an algorithm that leverages proxy-

based methods and traditional methods. Neural identification was first proposed and theoretically

analyzed in Xia et al. (2021a), who also proved the completeness of their neural identification algo-

rithm. However, such neural identification requires retraining models if the assignment values of T

and Y are changed.

Compared to do-calculus based algorithms for structure causal model, po-calculus Malinsky et al.

(2019) with single world intervention graph (SWIG) Richardson & Robins (2013) is a useful com-

plete identification method in the potential outcome framework.

In cases where identification is not possible, we can still give a bound to the intervention query

from observation data. Balke & Pearl (1997) give the tightest bound to a graph with instrument

variables. Recently, Zhang & Bareinboim (2021) gave a tighter bound than the natural bound for a

general DAG by utilizing observation data.

3.2.2 PROXY VARIABLES

Proxy variables approaches assume that the joint distribution of hidden confounders and ob-

served variables p(Z,X, T, Y ) can be approximated from observed data (X,T, Y ). Goodfellow

et al. (2016) listed some cases where such approximation is possible.

One example of a proxy variable approach is the Counterfactual Variational AutoEncoder (CE-

VAE) Shalit et al. (2017). CEVAE uses a non-parametric causal diagram prior to factorize the causal

effect into observation probability p(Z,X, T, Y ). It uses E(Y (T )) = Ep(Z|X)(Y |Z, T,X) to esti-

mate factual outcome and counterfactual outcome. The limitation of CEVAE is that the Z CEVAE

learned may contain mediators if the causal diagram prior was misspecified. Additionally, CEVAE

assumes that all individuals were generated by a single diagram.

Another proxy variable approach is the Time-series Deconfounder Bica et al. (2020), which is a

time-series neural network version of Deconfounder Wang & Blei (2019) that is focused on mul-

tiple treatments and linear models. Time-series Deconfounder assumes no hidden common cause
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between a single treatment variable and potential outcomes. Thus, if treatment variables are inde-

pendent of each other given some substitute confounder, the hidden multi-cause confounder cannot

exist because if it existed, such independence would not hold due to d-separation. Time-series De-

confounder first learns a factor model p(Z, T ) = p(Z)p(T |Z), where Z is the substitute confounder,

and then does a predictive check (similar to a generalization ability check) of p(T |Z). It then learns

an outcome model which inputs are treatment and the substitute confounder to predict potential

outcomes.

3.3 DIMENSIONALITY REDUCTION

In order to deal with high-dimensional covariates, some dimensionality reduction approaches may

be helpful for causal effect estimation tasks.

Current dimensionality reduction research can be divided into three classes according to the re-

duction target. The first class is to determine the dimension based on information loss. For example,

Xia et al. (2009) minimize regression mean squared error (MSE) from cross-validation for a lin-

ear model with a kernel. Dong & Gao (2021) propose a Lagrange loss with a binary mask π for

variational autoencoders (VAE) and prove its convergent dimension is a local minimum. However,

the hidden distribution is usually in Gaussian space, which is often regarded as an ”uninteresting”

signal noise due to the central limit theorem. The second class evaluates the non-Gaussianity of la-

tent space. For example, Darnell et al. (2017) assign a stability score to the principal component and

regard the change point with the smallest p-value as an indicator. Non-Gaussian component analysis

(NGCA) Blanchard et al. (2006); Bean (2014); Goyal & Shetty (2019) assumes Gaussian noise is

independent of the non-Gaussian subspace, and they discard the Gaussian component to determine

the signal space. However, the algorithm is either exponential related to the dimension of the non-

Gaussian subspace due to the error of accumulation Goyal & Shetty (2019) or the polynomial time

is unacceptable. Therefore, it cannot be applied directly to general high-dimensional data. The third

class is the end-to-end approach for a specified task. For example, Ding & Li (2007) and Luo et al.

(2018) search for the most discriminative subspace for clustering. Recently, Baggenstoss & Kay

(2022) propose a general approach based on probability density function (PDF) estimation with-

out assumption about data structure, although the choice of hidden dimension is empirical. Tavory

(2019) use normalized maximum likelihood to determine the principal component cardinality. Table

2 illustrates the assumptions of representative dimensionality reduction methods.

PCA Pearson (1901)Hotelling (1933) is a widely used linear dimensionality reduction technique.

It uses orthogonal transformation to obtain the uncorrelated principal components. Autoencoder

Kramer (1991) Kingma & Welling (2013), on the other hand, is a non-linear dimensionality re-
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Table 2: Dimensionality reduction assumptions. G: Gaussian; I: independent; nG: non-Gaussian;
⊥: orthogonal; →: generate; ANN: additive normal noise; DAG: directed acyclic graph.

Method Mapping p(z) p(x)
PCA Linear IG IG
ICA Linear InG InG+G
t-SNE Nonlinear Local continuty Local continuty
βVAE Nonlinear IG with β \
NGCA Linear G⊥nG ANN

LinGAM Linear G→nG ANN with DAG

duction technique that typically uses neural networks and gradient-based optimization to learn the

parameters for efficient computation. In autoencoders, the reconstruction error is an important part

of the loss function.

CausalVAE Yang et al. (2021) introduces causal effect learning among latent variables through la-

beled data and prior distribution of labels. The key to their success in learning the DAG over labels

is the difference in distributions between the causal and anti-causal directions.

3.4 EVALUATION

3.4.1 BENCHMARK DATASETS

The use of large datasets and benchmarks in research has been shown to be significant, as demon-

strated by the impact of ImageNet. Benchmarking on datasets can help to evaluate hypotheses, al-

gorithms, and models. However, there are few large datasets collected from reality for causal effect

learning tasks. There are two main challenges to benchmarking causal algorithms and models that

are different from traditional correlation data benchmarking. Firstly, evaluating interventions often

requires far more time and money than predictions for algorithms and models. Sometimes interven-

tions can even be unethical. For example, we cannot encourage or force someone to smoke or make

someone sick. Secondly, counterfactual data can never be collected in the real world, and there is

a lack of credible methodology and sufficient representative research to transform real datasets into

counterfactual datasets. Table 3 provides some datasets that may be useful.

The benchmark datasets used for evaluation often rely on simulation after randomized experi-

ments (SaRE) or well-matched twins (MT). For example, IHDP Hill (2011), Jobs Smith & Todd

(2005), and Simulated GWAS data Song et al. (2015) (Mendelian randomization) are based on the

National Supported Work Demonstration experiment (begun in 1986), the Infant Health and Devel-

opment Program (begun in 1985), and the Northern Finland Birth Cohort data (published in 2009),

respectively. The outcome models (response surfaces) are often linear/generalized linear models.

Otherwise, matched twins data is used for evaluation. For instance, the Twins dataset Louizos et al.
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(2017) is from twin births data from 1989 to 1991 in the USA. In the Twins dataset, the counterfac-

tual mortality of one twin was regarded as the mortality of the other twin.

The approaches to generate counterfactual outcomes, which will never be observed, cannot be

trivially applied to high-dimensional data. For the SaRE approach, the high-dimensional treat-

ment set requires exponentially-scaled randomized experiments. For the MT approach, the high-

dimensional covariate set requires strict balancing inside twins, which means that the covariate set

must be sampled from the same distribution. The high-dimensional outcome set requires us to un-

derstand the exponential-scale entanglement inside the outcome set.

There is also an approach to evaluate causal effects that requires intervention after learning. For

example, the uplift model learned in the development and test environment will be uploaded to

the online environment for further evaluation Zhao & Harinen (2019). However, the cost of such

evaluation is too high to follow for developing causal effect estimation algorithms rapidly.

As an alternative, factual outcome prediction performance will also be considered as a metric of

causal effect estimation sometimes. However, we will not take it seriously in this survey because

such alternatives ignore the fundamental problem in causal effect estimation: missing counterfactual

outcome data.

3.4.2 CAUSAL PACKAGES

Another perspective for building an experimental platform is to maintain unified packages in the

causal toolbox. This can help researchers to propose and test novel ideas quickly, thus promoting

the development of causal science. There are many packages that implement pipelines for causal

learning or reasoning. Some of them provide standard and state-of-the-art learning and reasoning

algorithms, such as the causal-learn package. Related work about causal packages is illustrated in

Table 4.
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4 OUR PRELIMINARY WORK

4.1 PACKAGES OF IDENTIFICATION ALGORITHM AND SCM

Learning causal effects for high-dimensional data is a challenging task that requires the use of au-

tomated identification algorithms to efficiently identify the causal effect before the learning process.

To this end, we implemented Shpitser’s complete identification algorithm, as existing open-source

codes such as causaleffect, Ananke, dowhy, and dagitty Textor et al. (2016) did not provide the com-

plete identified mathematical expression required for the algorithm. Our implementation is based on

the Python programming language, with a causal diagram as input and a mathematical expression

using LaTeX language as output.

We conducted experiments to identify the Average Treatment Effect (ATE) and Con-

ditional Average Treatment Effect (CATE) given data distribution of covariate, treat-

ment, and outcome. Our identification results are available on the following website:

”https://github.com/herdonyan/EstimandIdentification/blob/main/3variablesfigs/graphid web.html”.

The website can be previewed by adding ”https://htmlpreview.github.io/?” before the website name.

Moreover, we have developed a software package capable of generating samples from a given

structural causal model (SCM) consisting of a diagram, distributions, and functions. This package

facilitates the simulation of SCM datasets and can be utilized to evaluate the performance of causal

inference methods.

4.2 HIDDEN CONFOUNDING AND OUT-OF-DISTRIBUTION GENERALIZATION

We submitted a paper to 2022 UAI which has been rejected. This paper is addressing on out-

of-distribution generalization in causal effect estimation with hidden confounding. We assume the

diagram is invariant in this paper.

From the identification result, we can train the prediction model and compute causal effect fol-

lowing the factorization results. However, we wondered what would happen if we did not do iden-

tification but just prediction. For example, the identification result of figure 1 is P (C|do(S)) =∑
d P (d)P (S,C|d,B)∑
d P (d)P (S|d,B) . We choose C∗ = argc maxP (c|do(S)) as prediction value. The conditional

prediction is E(C|S,D,B). The average prediction is E(C). In the following, we use X1 denote

dopamine, X2 denote brain, T denote smoking, and Y denote lung cancer.

The experimental properties we are interested in about our model and algorithm after identifi-

cation is OOD generalization under parametric interventions from correct identification comparing
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D B

G

S C

E

Figure 1: Example of four variables. D means dopamine; B means senior brain activity (frontal
lobe); G means unobserved gene/physique; E means social environment not easy to measure. S
means smoking behaviour, and C means cancer. For example, E → D may represent some life
pressures, and E → S may be unconscious mimic nature.

Figure 2: Experiment error for ATE estimation where X1 is discrete. Star is median value. Red line
is average value. ’I’ means inner mechanisms, and ’O’ means outer mechanisms. ’S’ means the
parametric intervention is mechanism shifting, and ’T’ means the parametric intervention is random
transformation of mechanism.
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Figure 3: Experiment error for ATE estimation where X1 is continuous. Star is median value. Red
line is average value. ’I’ means inner mechanisms, and ’O’ means outer mechanisms. ’S’ means the
parametric intervention is mechanism shifting, and ’T’ means the parametric intervention is random
transformation of mechanism.

Figure 4: Experiment error for PEHE estimation where X1 is discrete. Star is median value. Red
line is average value. ’I’ means inner mechanisms, and ’O’ means outer mechanisms. ’S’ means the
parametric intervention is mechanism shifting, and ’T’ means the parametric intervention is random
transformation of mechanism.
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Figure 5: Experiment error for PEHE estimation where X1 is continuous. Star is median value. Red
line is average value. ’I’ means inner mechanisms, and ’O’ means outer mechanisms. ’S’ means the
parametric intervention is mechanism shifting, and ’T’ means the parametric intervention is random
transformation of mechanism.

with pure prediction. It can be measured in two aspects: OOD unbiasness and variance. If the esti-

mand is E(Yi(1)−Yi(0)), then we can use ATE and PEHE as unbiasness and variance measurement

respectively.

In our experiment, we use the linear model (same structure with figure 1) as a real-world model to

generate data and test the out-of-distribution generalization ability. Each predictor of our association

layer model is linear regression or classification model. To keep the consistency with X-learner, we

also use two models for treatment and control group separately. We use random transformation

and shifting of mechanisms as parametric intervention to test the robustness of our framework. For

every setting, we run 50 independent experiments to evaluate the result where there are 1000 samples

totally in each experiment.

The train sample number is 800, and the train/valid splitting is 640:160. The test sample number

is 200. In algorithm 2 and 3, the sampling numbers of X1 and (Y, T ) are both 100. The dimension

of every variable is 1. In optimization, the max epoch is 100000, and we will stop if there is no

decrease of loss above 20 and 100 epochs for continuous and discrete testing, respectively. The loss

function is MSE loss for regression and Cross Entropy loss for classification; the learning rate is

0.001. When positivity is not satisfied or the joint distribution is zero, we will resample data. The

T are discrete variables and X2 and Y are continuous variables. X1 can be continuous or discrete

variable. We don’t use variational method to fitting function of error variance, and use prior noted

in the paper directly due to convenience. All the experiment are independent. Figure 6 shows some
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continuous data. In those figures, left part is train data, and right part is testing data. Yellow and

purple means different treatment assignments. And z-axis is value of Y .

Figure 6: Some samples of generated data

Although nonlinear model is not used in our experiments, it can still work if there are nonlinear

predictors and environments.

Figure 2, 3, 4, and 5 show the experiment results. We should notice that in-sample testing is not

only IID testing due to the missing counterfactual data, and our out-sample testing is under those

parametric interventions. In unbiasness testing, estimations after identification are more unbiased

than MR Freedman (2008) and INT Lin (2013) from ATE estimation result in both discrete and con-
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tinuous cases. Considering estimation variance, it got better performance when outer mechanisms

are changed.

5 FUTURE PLAN

In the next phase of my PhD program, my research will focus on developing new methods for

learning causal effects from high-dimensional observational data that are subject to unmeasured

confounding. Specifically, I will explore the use of machine learning algorithms to address the

challenges posed by confounding variables, which are often unobserved and can bias estimates of

causal effects.

To achieve this, I will conduct simulation studies to evaluate the performance of different machine

learning approaches in controlling for confounding variables, including methods based on inverse

probability weighting, and balancing regularization. I will also apply these methods to real-world

datasets from diverse domains, such as healthcare, social sciences, and economics, to assess their

usefulness and applicability in practice.

In addition, I plan to collaborate with other researchers in the field to build a software package that

implements the methods I develop, making them accessible to a wider audience. This will involve

coding and testing the software, as well as writing documentation and tutorials.

To disseminate my research findings, I will present my work at several international conferences,

such as the NeurIPS, ICLR. I will also aim to publish in high-impact peer-reviewed journals.

To achieve these goals, I will need to continue developing my skills in statistics, machine learn-

ing, and programming. I plan to attend seminars, reading groups, talks to keep up with the latest

developments in these areas and to collaborate with other students and researchers in the field.

Overall, my future plan for my PhD program is to contribute to the development of new methods

for learning causal effects from observational data with unmeasured confounding. This work has the

potential to have a significant impact on a wide range of fields, from healthcare to social policy. I am

excited to continue this research and to make a valuable contribution to the field of causal inference.

Table 5: Ph.D. Program Timeline with Publication Goals

Year Activities
1 Coursework, literature review, research proposal
2 Data collection, preliminary analysis, conference paper 1, conference presentation, QE
3 Advanced analysis, paper writing, conference paper 2, journal paper, Candidature
4 Finalize dissertation, defend dissertation, conference paper 3, graduation
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