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History of causal inference (Neyman)

* Jerzy Neyman was a Polish mathematician and
statistician who spent the first part of his
professional career at various institutions
in Warsaw, Poland and then at University College
London, and the second part at the University of
California, Berkeley.

* He published many books dealing with
experiments and statistics, and devised the way
which the FDA tests medicines today.




History of causal inference (Neyman)

The yield from the ith plot measured with high
accuracy will be considered an estimate of the num-
ber U.. ° i 1

If we could repeat the measurement of the yield on U n k nown pOte ntl d I y 1€ Id S
the same fixed plot under the same conditions, we
could use the above definition of the true yield. [See
the Introductory Remarks for a few comments on
Neyman'’s notion of true yield.] However, since we can ‘
only repeat the measurement of a particular observed
yield, and this measurement can be made with high
accuracy, we have to suppose that the observed yield \ \
is essentially equal to U;, whereas differences that Plots
occur among yields from various plots should be at- ‘
tributed to differences in soil conditions, especially ‘
considering that low and high yields are often clus-
tered in a systematic manner across the field.

To compare v varieties, we will consider that many
sequences of numbers, each of them having two indices
(one corresponding to the variety and one correspond-

ing to the plot):
Uily Ui2r tt Ui (,'=17 2, "'!”)* CrOp
Let us take v urns, as many as the number of varieties Varieties

to be compared, so that each variety is associated with
exactly one urn.

Splawa-Neyman, Jerzy, Dorota M. Dabrowska, and Terrence P. Speed. "On the application of probability theory to agricultural experiments. Essay on principles. Section 9." Statistical
Science (1990): 465-472.



History of causal inference (Neyman)

Soil Fertility Tex/t‘ure Drai:age Microflora Other
* “We see that knowledge of the \-\":7’5:tj;;ff'j’:;;x:zj'f;;;j*“\”:'/f[
preceding trials has an effect on the W st~ A
probability of outcomes of subsequent Fertlze - b
trla|S SO that tl’la|S COndUCtEd |n thIS FIGURE 4.4. Model 1: an improperly controlled experiment.
way are not independent.” i W ALl o
* Infinite plots: “Therefore the trials will T\ {
turn out to be independent, and we B
will be able to apply the law of large T L m—
numbers, and our definition of a true reiy towe  bmre Mooton Ot
yield, and along with it known formulas S e e, Ty [
from probability theory.” °'" .’ m

FIGURE 4.6. Model 3: the world simulated by a randomized controlled trial.

Splawa-Neyman, Jerzy, Dorota M. Dabrowska, and Terrence P. Speed. "On the application of probability theory to agricultural experiments. Essay on princibles. Section 9." Statistical

Science (1990): 465-472.
Pearl, Judea, and Dana Mackenzie. The book of why: the new science of cause and effect. Basic books, 2018.



History of causal inference (Potential Outcome)

* Fundamental problem: missing outcomes >= 50%

* “The first step toward addressing observational studies is to relax the
classical randomized experiment assumption that the probability of
treatment assignment is a known function. We do maintain, however, in this
part of the text, the unconfoundedness assumption that states that
assignment is free from dependence on the potential outcomes. Moreover,
we continue to assume that the assignment mechanism is individualistic, so
that the probability for unit i is essentially a function of the pre-treatment
variables for unit i only, free of dependence on the values of pre-treatment
variables for other units. We also maintain the assumption that the
assignment mechanism is probabilistic, so that the probability of receiving
any level of the treatment is strictly between zero and one for all units.”

Imbens, Guido W., and Donald B. Rubin. Causal inference in statistics, social, and biomedical sciences. Cambridge University Press, 2015.



Present of causal learning (Evaluation)

Causal Effect Estimation

Causal Structure Learning

Causal Interpretability

Unbiased Interactive

Natural Experiments, RCTs

Time Series Datasets

and Fairness ML
Sparsity,
" Standard E, MSE, Counterfactual Interpretab%ht'y, NDCG@K, MAP@K,
2 Effect RMSE, PEHE, SHD, SID, Explanation Speed, Proximity, ARP@K. APIT@K
E Metrics Policy Risk Frobenius Norm, xp Diversity, ’
> Precision, Recall, F1, Visual Linguistic
Heterogenous Upli ft TPR, FPR, MSE, AUC,
Effect Cj;zm Coef> Precision-Recall Curve, Fairness FACE, FACT,
Metrics Coef FPR-TPR Curve, Counterfactual Fairness,
Time Series Standard and Heterogeneous TVD, KL-Divergence, PC-Fairness,
Metrics Effect Metrics, F-Test, T-Test F-test Ctf-DE, Ctf-1E, Ctf-SE
Observational data with
With known eff.ect; observatlon.al Training on a regular dataset
- and experimental data pairs; . . . ..
o Ground i i A transductive Transductive | and testing on generated Training set comes
5 Truth sampling from observational i h h h cfactual £ biased
= data- . . setting where we have the counterfactuals rom a biased source
5 ata; sampling from synthetic
2 ’ . ground-truth causal whereas test set comes
2 data; sampling from RCTs . .
& : graph and estimated graph - from an unbiased source
Without L S Generating counterfactual
Evaluation is possible if . .
Ground . Inductive explanations for an unseen
subset of the data is from RCTs .
Truth instance
‘§
3 . Causal Direction, . .
« -
g Under Unconfoundedness Assumption, Causal Graphs, Tmage, Text, Tabular Semi-Synthetic

datasets, RCTs

TABLE I: Summary of metrics, procedures, datasets for evaluating CL approaches.

Cheng, Lu, et al. "Evaluation methods and measures for causal learning algorithms." IEEE Transactions on Artificial Intelligence 3.6 (2022): 924-943.




Evaluation Procedures (Evaluation)

e Observation data with known effect (low data availability)
e causal direction

 Pair of observations and experiments (low data availability)
* Perturb-seq: dissecting molecular circuits with scalable single-cell rna profiling of
pooled genetic screens

 Sampling from synthetic data
e generate observational data from synthetic causal system
* cannot generalize well to real-world setting

 Sampling from observation data
* Use known functions to create treatment assignments and outcomes
* cannot generalize well to real-world setting

 Sampling from RCT

* OSRCT: treatment assignment is synthetic, middle data availability



Evaluation Procedures (Evaluation)

Table 1: Algorithms of causal effect learning from observation data. BLR/BNN: Shalit et al."(2017);TARNet/CFR-MMD/CFR-Wasserstein: Johansson et al.
(2016);Dargonet: [Shi et al.| (2019);X-learner: Kiinzel et al. (2019);CEVAE: Louizos et al. (2017);Deconfounder: Wang & Blei (2019);GANITE: Yoon et al.

(2018);SITE: Yao et al. (2018);DRNets: Schwab et al. (2020);VCNets: Nie et al. (2021 ).

Algorithms Learning Stage | Counterfactual Imputation Balancing Regularization Potential Outcome Prediction | Estimand Modeling | Hidden Confounding
BLR : S Linear
BNN Two-stage Nearest Neighbor Moment’s Difference Naural Netwosk None None
TARNet None
CFR-MMD MMD i
CER-Wassersein End-to-end Perfect Counterfactual Warasrtalis Twin Neural Networks None None
Dargonnet CrossEntropy
X-Learner Three-stage Perfect Counterfactual None Twin BARTSs Yes None
CEVAE End-to-End Perfect Counterfactual Bayesian Variational Inference Network Model Network None Proxy variables
Deconfounder Two-stage Perfect Counterfactual Posterior Predictive Check of Factor Model Linear None Proxy variables
GANITE Two-stage Counterfactual GAN None ITE GAN None None
SITE End-to-end PDDM Similarity Middle Point Distance Neural Network None None
DRNets g Treatment-Dose Networks
VCNets End-to-end Nearest Neighbor None Varying Coefficient Network None None

—EEXIEMR AR GEE2EUNEMESIAN, kBMEFL




Present of causal learning (Evaluation)

Task

Causal Effect Estimation

Causal Structure Learning

Evaluation for Effect Estimation

Tool

CausalML

EconML

DoWhy

CauseBox

CausalNex

bnlearn

TETRAD

CausalDiscovery

Causality-Benchmark

JustCause

Data

Lid

v

v

v

v

v

v

v

v

v

v

v

v

v

v

pealg
v
v

v

v

Networked

Time Series

v

Methods

Propensity Score

Tree-based

Meta-Learner

NS

Doubly ML

Doubly Robust

v

NSNS

NSNS NS

Mediation

Graph

Pairwise

NS

Metrics

PEHE

RMSE

MAE

NS

Bias

Coverage

Confidence Interval

Aggregating Score

Refutation

SID

SHD

Classification

User-Input Metrics

NS

NNNNS

NSNS

NENSNSOS

v

v

v
v

v
v

v

v
v
v

TABLE III: Comparisons of causal inference tools with a focus on the included datasets, methods, and metrics.

Cheng, Lu, et al. "Evaluation methods and measures for causal learning algorithms." IEEE Transactions on Artificial Intelligence 3.6 (2022): 924-943.




Present of causal learning (Evaluation)

Data type Data Availability Internal Validity External Validity
All Potential Outcome Data | Usually No \ \
Randomized Trial Data Middle High Middle
Natural Experiment Middle Middle Middle
Observation Data Very High Too many untestable and |\
unrealistic assumptions
Select Remove missing
| ID | T | O | € | treatment | ID | T | O | € |treatmentrows T T 5
1 1 5.7 L > 1 1 5.7 L
2 [ 1 [45] H ¢ paEanEERe ST
3 0 |15 ]| H > 3 0 |15 H > 3 0 |15 H
4 1 6.2 L > 4 1 6.2 L > 4 1 6.2 L
5 | 0 [42] L > 5 [0 [42] L = ? 8 gg h
6 0 1.5 L > 6 1 ? L
7 0 3.0 H > 7 0 3.0 H /
8 1 5.3 L > 8 0 ? L Constructed observational
RCT data (D)

L data (Dggper)
Selected treatment
Estimate Estimate

caussl effects Effect estimates\A Evaluation —al Effect estimates causal effects

Figure 2. The process of creating observational-style data from a randomized controlled trial.

Gentzel, Amanda M., Purva Pruthi, and David Jensen. "How and why to use experimental data to evaluate methods for observational causal inference." International Conference on Machine
Leaming. PMLR, 2021. https://icml.cc/media/icml-2021/Slides/9159.pdf



Present of causal learning (Evaluation)
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Figure 3. Normalized error in estimating ATE for data sets with continuous outcome. Sim denotes simulator, SR denotes synthetic-response
data sets, RCT denotes randomized controlled trials and APO denotes computational systems.

Gentzel, Amanda M., Purva Pruthi, and David Jensen. "How and why to use experimental data to evaluate methods for observational causal inference." International Conference on Machine
Leaming. PMLR, 2021. https://icml.cc/media/icml-2021/Slides/9159.pdf



Present of causal learning (Evaluation)

1

1

:

1

' L

: H

1 L]

0.14 :
e , |. |

f.

1 1]
= 1
° |
E .
w 1

0.0+ -jel - - F% - - 6l - URiA 7 - T -

‘ 1

|

1

|

1

1

‘ :
e [ ]
-0.14 !

:' °
® ¥ © © T @ ¥ v ¢ 5 o9 2 &
E £ £ E K K K K K E E £ £ g
5 & 65 5§ 2 8§ 2 2 B8 2 8 B B &

-

Data se

E3 Naive B8 PSM B IPTW BE OR ES BART E3 CF B8 DRE

Figure 6. Error in estimating risk difference with two biasing
covariates, for data sets with binary outcome

Gentzel, Amanda M., Purva Pruthi, and David Jensen. "How and why to use experimental data to evaluate methods for observational causal inference." International Conference on Machine
Leaming. PMLR, 2021. https://icml.cc/media/icml-2021/Slides/9159.pdf



Now, it is brainstorming time.



Workshop time

Questions:

What is not the causality we want?

Why randomized trial is not regarded as

not useful?
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scienceFlresearch

https://en.wikipedia.org/wiki/Science
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https://en.wikipedia.org/wiki/Science
https://en.wikipedia.org/wiki/Research

Artificial Randomness

“As | know only one thing—that | know nothing” (ignorance)

What is “nothing” that we know for causality?

Randomness is a way to create ignorance. So, we can attain
knowledge from it.

Definition: an assignment that can not be predicted by any model in the list
given all pre-treatments of the individual.

BRBERFERAANERILRAZ BATILENAIRENLE




Use difference method to understand causality

Observational studies: RCT
test # train ‘

» Predict outcome under unobserved treatment Te St — Tra I n

» Treatment is not assigned equally at random: p(T =11X) # P(T=1)

» Thereisa non-n:gligible difference between treatment group distributions Z[;E\g @ %E/\] I'ﬂ E@;% . ;ZD %gﬂﬁ;kfé%
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History of causal inference (Diagram)

........ I4
Egh A Z,

Fig. 6. Typical models in which the effect of X on Y is identifiable. Dashed arcs
represent confounding paths, and Z represents observed covariates.

Pearl, Judea. "Causal diagrams for empirical research." Biometrika 82.4 (1995): 669-688.
https://ananke.readthedocs.io/en/latest/notebooks/causal_graphs.html

- Graph: BG, UG, DAG, ADMG,
CG, SG ......

* Do-calculus for computation
acceleration

/ \ BHIEEBMELNE
AL ME, (Bt
ADMG J:M 1E¢)L1EE
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History of causal inference (Diagram)

THEOREM 3. Let G be the directed graph associated with a causal model as defined in
(3), and let pr(.) stand for the probability distribution induced by that model. For any disjoint
subsets of variables X, Y, Z and W we have the following.

Rule 1 (insertion/deletion of observations):

pr(y[X, z, w)=pr(y|X,w) if (YILZ|X, W)g,. (10)
Rule 2 (action/observation exchange):
pr(y|X, z, w)=pr(y|X, z,w) if (YALZ|X, W)g,,. (11)

Rule 3 (insertion/deletion of actions):

pr(y|X, z, w)=pr(y|X,w) if (YILZ|X, W),

X,ZW)°

(12)
where Z(W) is the set of Z-nodes that are not ancestors of any W-node in Gx.

Pearl, Judea. "Causal diagrams for empirical research." Biometrika 82.4 (1995): 669-688



History of causal inference (Diagram)

APPENDIX

Proof of Theorem 3

(1) Rule 1 follows from the fact that deleting equations from the model in (8) results, again, in
a recursive set of equations in which all ¢ terms are mutually independent. The d-separation
condition is valid for any recursive model, hence it is valid for the submodel resulting from del-
eting the equations for X. Finally, since the graph characterising this submodel is given by
Gy, (YALZ|X, W)g, implies the conditional independence pr(y|X, z, w) = pr(y|X, w) in the post-
intervention distribution.

(ii) The graph Gy, differs from Gy only in lacking the arrows emanating from Z, hence it retains

all the back-door paths from Z to Y that can be found in Gx. The condition (YLZ|X, W),

ensures that all back-door paths from Z to Y in Gy are blocked by {X, W}. Under such conditions,
setting Z =z or conditioning on Z =z has the same effect on Y. This can best be seen from the
augmented diagram Gk, to which the intervention arcs F,— Z were added, where F, stands for
the functions that determine Z in the structural equations (Pearl, 1993b). If all back-door paths
from F;, to Y are blocked, the remaining paths from F, to Y must go through the children of Z,
hence these paths will be blocked by Z. The implication is that Y is independent of F, given Z,
which means that the observation Z = z cannot be distinguished from the intervention F, = set(z).

(ii1)) The following argument was developed by D. Galles. Consider the augmented diagram
G% to which the intervention arcs F,—Z are added. If (F,ILY|W, X)g,, then pr(y|%, Z, w)=
pr(y|Xx,w). f (YL Z|X, W)GYW and (F; X Y|W, X)g,, there must be an unblocked path from a
member F,- of F, to Y that passes either through a head-to-tail junction at Z’, or a head-to-head
junction at Z'. If there is such a path, let P be the shortest such path. We will show that P will
violate some premise, or there exists a shorter path, either of which leads to a contradiction.

If the junction is head-to-tail, that means that (Y LZ’'|W, X)g, but (YLLZ'|W, X R
there must be an unblocked path from Y to Z’ that passes through some member Z” of Z(‘ZV) in
either a head-to-head or a tail-to-head junction. This is impossible. If the junction is head-to-head,
then some descendant of Z” must be in W for the path to be unblocked, but then Z” would not

Pearl, Judea. "Causal diagrams for empirical research."” Biometrika 82.4 (1995): 669-688

be in Z(W). If the junction is tail-to-head, there are two options: either the path from Z’ to Z”
ends in an arrow pointing to Z”, or in an arrow pointing away from Z”. If it ends in an arrow
pointing away from Z”, then there must be a head-to-head junction along the path from Z’ to Z".
In that case, for the path to be unblocked, W must be a descendant of Z”, but then Z” would not
be in Z(W). If it ends in an arrow pointing to Z”, then there must be an unblocked path from Z”
to Y in Gy that is blocked in Gxzg. If this is true, then there is an unblocked path from F,” to
Y that is shorter than P, the shortest path.

If the junction through Z’ is head-to-head, then either Z’ is in Z(W), in which case that junction
would be blocked, or there is an unblocked path from Z’ to Y in Gxzm; that is blocked in Gyg.
Above, we proved that this could not occur. So (Y 1LZ|X, W)g5 5 implies (F; L Y[ W, X)g:, and

Zw
thus pr(y|X, Z, w) = pr(y|X, w).
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