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The connection with my work

My work Is about causal inference, individual treatment, and
medical Al.

And treatment effect estimation for Medical Al requires strong
and .

Paper 1: an end-to-end (causal effect identification and estimation)
neural method for arbitrary L, query (estimand)

Paper 2: a tractable causal neural model based on conditional
sum-product network



Persons

)

wué:n - \‘ \“\

Donald Rubin

David Joshua Guido

Card D.Angrist  W. Imbens
Yousua Bengio it B o

Elias Bareinboim e, el e

THE ROYAL SWEDEH ACADEMY CF SCIENCES

Jerzy Neyman and more 3



Level Typical Typical Questions Examples
(Symbol) Activity
1. Association Seeing What 157 What does a symptom tell
FPly|x) How would seeing X me about a disease?

change my belief in}Y"7 What does a survey tell us

about the election results?
2. Intervention Doing What 1f? What if I take aspirin, will
Ply|do(x), z) What if [ do X7 my headache be cured?

What 1if we ban cigarettes?

3. Counterfactuals | Imagining, Why? Was it the aspirin that
Ply:|z', y') Retrospection | Was it X that caused Y7 stopped my  headache?
What if I had acted Would Kennedy be alive
differently? had Oswald not shot him?
What if I had not been

smoking the past 2 years?

Figure 1: The ladder of causation

Pearl, J., 2000. Models, reasoning and inference. Cambridge, UK: Cambridge University Press, 19.
Pearl, J. and Mackenzie, D., 2018. The book of why: the new science of cause and effect. Basic books.
http://web.cs.ucla.edu/~kaoru/3-layer-causal-hierarchy.pdf




Application

B Recommendation system (A/B, popularity bias etc.)
B CV and NLP (stable learning, IRM, HRM etc.)

B Robotic

B Causal reinforcement learning (POMAP etc.)

B Transfer learning (transportability, data fusion etc.)
B Fconomics (labor markets, natural experiment etc.)
B Climate



Basic

B modularity (modules independence and model/data
Independence)

B do-operation (mutilation) and do-calculus

Causal effect doesn’t include spurious correction!

selection bias

@0

@

confounding bias anti-causal __ _ M bias
mediation bias

ZHANG jiji. HKBU. Do-calculus and Modularity in Causal Markov Categories. 2021 PCIC talk. °



Basic

Do-operation Is an operation to remove arrow/influence to the variable of SCM
that we want to do intervention on.

Do-calculus is a COMPLETE and SUFFICIENT algebraic method for ALL identifiable
cases to prompt L, Query globally with local Markov property of DAGs and give
Ly Response in polynomial time by L, Data.

Pearl, Judea (1995), "Causal diagrams for empirical research”, Biometrika, 82 (4): 669-710, doi:10.1093/biomet/82.4.669.
Huang, Yimin; Valtorta, Marco (2006). "Pearl's Calculus of Intervention is Complete”. Proceedings of the Twenty-Second

Conference on Uncertainty in Artificial Intelligence. 217-224. 7



Paper 1: The Causal-Neural Connection: Expressiveness, Learnability, and Inference

BMotivation: disentangling the notions of expressivity and
learnability

BMethods: g-constrained Neural Causal Model
BExperimental dataset: generated by equations

BMajor findings: an that is both
sufficient and necessary to determine whether a causal effect
can be learned from data (causal ) and then

estimates the effect whenever identifiability holds (causal
) or give up and low bound



Expressivity and Learnability

Expressivity of Neural Model

(a) (b))
Unobserved Learned/
Nature/Truth Hypothesized

Structural Causal Neural
Model A1* Model A

'\

Training (L] = L)

Figure 1: The l.h.s. contains the unobserved true
SCM M* that induces the three layers of the PCH.
The r.h.s. contains an NCM that 1s trained to match
in layer 1. The matching shading indicates that the
two models agree w.r.t. L; while not necessarily
agreeing w.r.t. layers 2 and 3.

Expressivity of Neural Causal Model

(b)
Learned/
Hypothesized

Training (L] = £1)

Figure 2: The lLh.s. contains the true SCM
M* that induces PCH’s three layers. The
r.h.s. contains an NCM that is trained with
layer 1 data. The matching shading indicates
that the two models agree with respect to L,
while not necessarily agreeing in layers 2 and
3. The causal diagram G entailed by M™ is
used as an inductive bias for M.




Expressivity and Learnability

Identifiability

(a} In the wentifiable case, all NCMs that (b)) In the non-identifiable case, there could

are G-consisient and Li-consistent with M®  exist two NCMs, M and M, that are both

will also match in £}, G-consistent and Ly -consistent but still dis-
agree in ().

Figure 11: A visual representation of the ID proplem. Here, @ is a query of interest, and Q; is the

answer for that query induced by NCM M. The goal is to check if all NCMs that are G-consistent
and [.1-consistent are also consistent in Q.

Structural Assumptions

7P (Y|do(x)) =
. P(Y|do(x)) .~

. . Observational ! __Interventional
(.L1) Distributions p (Lo) Distributions
Data Query

Figure 3: P(Y | do(x)) is identifiable from
P(V) and NCM M € Q if for any SCM
M* € QF (top left), M, M* match in P(V)
(bottom left) and G (top right), they also
match in P(Y | d bottom right).




Example of Identifiability

P(cancer | do(smoke)) is NOT D means dopamine; B means brain; G means undetected
identifiable due to unobserved gene. gene/physique ; E mean social environment not easy to measure.
M1: G->S and G->C are NOT 0 and

S->Cis O P(cancer | do(smoke)) is minimum graph that is identifiable by do-
M2: G->S and G->C are 0 AND S->C calculus but not identifiable by front-door and back-door.

is NOT 0 2qp(c sld, b)p(d)

P(cldo(s)) =

It maybe a bad causal graph. Y.qp(sld, b)p(d)

Zecevi¢, M., Dhami, D.S., Karanam, A., Natarajan, S. and Kersting, K., 2021. Interventional Sum-Product Networks: Causal
Inference with Tractable Probabilistic Models. arXiv preprint arXiv:2102.10440. 11



Structural Causal Model:

Do-calculus:

Extra Glance Material

12


https://wiki.swarma.org/index.php?title=%E7%BB%93%E6%9E%84%E5%9B%A0%E6%9E%9C%E6%A8%A1%E5%9E%8B
https://wiki.swarma.org/index.php?title=%E7%BB%93%E6%9E%84%E5%9B%A0%E6%9E%9C%E6%A8%A1%E5%9E%8B
https://wiki.swarma.org/index.php?title=Do%E6%BC%94%E7%AE%97

Theorems

Theorem 1 (NCM Expressiveness). For any SCM . M* = (U, V., F,P(U)), there exists an NCM
U|H| — TT V. F. FlTh- s.t. M is Ly-consistent w.r:t .-‘L.--'I*. H

Theorem 2 (NCM G-Consistency). Any G-constrained NCM M (#) is G-consistent.

Theorem 3 (L5-G Representation). For any SCM . M?™ that induces causal diagram G, there exists a
G-constrained NCM M (6) = TT vV, F, F'ITu- that is Lo-consistent w.rit. M”™, N

Theorem 4 (Graphical-Neural Equivalence (Dual 1D)). Let £2* be the set of all SCMs and () the set of
NCMs. Consider the true SCM M?™ and the corresponding causal diagram G. Let () = Py | do(x))
be the query of interest and P(v) the observational distribution. Then, () is neural identifiable from
(G) and P(v)if and only if 't is identifiable from G and P(v). |

13



Expressivity and Learnability

Corollary 1 (Neural Causal Hierarchy Theorem (N-CHT)). Ler )" and (1 be the sets of all SCMs
and NCMs, rfz.pﬁm ely. We say r!mr Lm E‘FJ of the causal hierarchy ﬁ;rNC"vﬁ collapses to Layer i
(i < j)relative to M™* € Q" if L;(. — L;(M) implies that Li(M*) U ) for all M e Q.

Then, with respect to rhf Lfbfz.mm measure over (a suitable encoding of L 7 - mzm alence classes of)
SCMSs, the subset in whick Laver j of NCMs collapses to Laver 1 has measure zero. H

Corollary 2 (Neural Mutilation (Operational ID)). Consider the true SCM M™*™ € (1%, causal
diagram G, the observational distribution P(v'), and a target query Q equal to P (y | do(x)). Let
-‘vI c U G) be a G-constrained NCM that is . -consistent with M*_If the effect is Idﬁﬂ!::ﬁﬂbfﬁ’fmm
G and P(v), ther, () is computable through a mutilation process on a proxy NCM ‘VI L.e., for each

X € X, replacing the equation [, with a constant © () = PROC- MUTILATI()H[M.}{. Y )) H

Corollary 3 (Markovian Identification). Whenever the G-constrained NCM M is Markovian, P(y
do(x)) is always identifiable through the process of mutilation in the proxy NCM (via Corol. . H
Corollary 4 (Soundness and Cmnplctcncvﬂ Let C1° be the set of all SCMs, M™ < Q)" be the true

SCM inducing causal diagram G, () = P(y | do(x)) be a query of interest, and Q) be the result from
running Alg. 1| with inputs P*(v) = Li(M*) > 0, G, and Q). Then Q) is identifiable from G and

P* (v \if and only if E_'} is not FAIL. "vh,:rfmfr ;f{;} is not FAIL, then f_'} = PM"(y | do(x)). H P




Algorithm

Algorithm 1: Identifying/estimating queries with NCMs. Algorithm Z: Training Model

Input : Data {v }'_ ., variables V, X T WV,
Input : causal query (@ = Ply | do(x)). L data P{v). and P LVk i1 e = v .
xE Dy, Y © V, v € Dy, causal diagram &,
causal diagram & e =
number of Monte Carlo samples m., regulanzation
constant A, learning rate

Output : pM” (v | dolx)) if identifiable, FAIL otherwise,

NCM{WV, G) // from Def. H M o+ NCMIV. §) // from Def. H

v G M (8 Foy AT Y Initialize parameters @i, and 8,44
arg ming [ (v |do(x)) st Ly (M(8))=Fiv) tor b < 1ton de
M8

(wldalfw«ihet T "l_} (834 j:'l:_\.r] // Estimate from Eq. @

e AT AW s

do(x)) # PM®nax) (y | do(x))|then Puain  Bstinate(M (Buuin), V, v, 0,0, m)
0o Estimate (A ( O nax ). V,ove, B, 8, m)
i =0

1-. F = p - ) . N ‘
return P Pmin’ (y | do(x)) // choose min or max Gmax U
arbitrarily ' 5 for v € Dy do
) if Consistent (v, v) then

|I;Illl:ll A .-;Il.l:ll:l 1
Estimate( M | (B nin ). V, v, X, x, m)
l!-ll LN E- S AL ‘-II-JI |"'H.+

Estin:ﬁn.:eli.'ﬁJrll‘l?'“m_ﬁl 1, V.ov, X, %)

. .. _|| i [ a4 ; I d 50 i =
Lo 1' (v = Alog .I',,. v | do{x])}] (5) // £ trom Eq.

-’:m'i'u — = ]':""f—'- -|::'|ni|| — A II'J;[J. - ':E'ui.'..:l

-'EIII-'-}R' — = ].Uj_:', -Il:.'inl::x — A |.I'I;_‘, r?nl.:':x

Bmin +— Omin + 1V Lnin

El'-:.:'u}; i EI|'u.='|:-~; T ".I'?E-'-n::};




Algorithm

Let U and G denote the latent C”-component variables and Gumbel random variables, respectively.
To estimate P (v) and P (v | do(x)) given Eq. |2, we may compute the probability mass of a
datapoint v with intervention do( X = x) (X i1s empty when observational) as:

Piu=)

- 1 |i'.'.
j‘}.u-'_-r.lg'l:- - ].‘ T : ! T e — ; _— _-'I']
v | do(x)) [ ——{s - E I ‘ T o (

ald;(pay-  ul- ;e )) i ] R - R
[o(o: p Vir TV TR T and {u®}"" | are samples from F(U"). Here,
] — a(@i(pay,,uy by, )] =10 73]

we assume v 1s consistent with x (the values of X £ X in v match the cormresponding ones of x).

where 7, =

Otherwise, P99 (v | do(x)) = 0. For numerical stability of each ¢;(-), we work in log-space and
use the log-sum-exp trick.




Example of mutilation/truncated factorization

SWIG (single world intervention graph) SWIG without latent projection

Shpitser, I., Richardson, T.S. and Robins, J.M., 2020. Multivariate counterfactual systems and causal graphical
models. arXiv preprint arXiv:2008.06017. 17
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Sampling

Task 1

| Diagrams

Figure 15: Causal Pipeline with unobserved SCM A* in the keft, generating

Causal Estimation

I Dataset D[V
|
|

|
£ Y

Empirical

| Task 2 Distribution

Fit Estimand |
land |

I
|
I using Data 0V
|
|

| - -
| Causal Estimand
|

; (17, which generates input to the estimation task (2).

both G and P{v), which

Algorithm

Algorithm 4: Identifying queries with a symbolic 1D

stimating with NCMs,

Input : causal query Ny | do
P(v), and causal diagram G

Qutput : PM(y | do(x)) if identifiable, FATL
otherwise

if symbolicID ()

M +— NCM(V, I_|-|-:|

8° + arg ming I}
some divergence [)

procedure and then

else
|_ refurn FATL

Figure 18:

/f from Def.

Statistical

HCR
Estimalion
(a) Neural ID + Newral Estimation (Alg. m
Etatistical

Causal

(]

Eslimation

i{b) Symbolic ID + Neural Estimation |_.'!-.l;;.EP

{Left panel) Algorithm for solving identification problem with symbolic solvers and

estimation with NCMs. (Right) Schematic illustrating differences between Alg.[T)(a) and Alg. [4](b).

18



Experiment Setting

While identifiability is fully solved by the asymptotic theory discussed so far (i.e., it is both necessary
and sufficient), we now consider the problem of estimating causal effects in practice under imperfect
optimization and finite samples and computation. For concreteness, we discuss next the discrete
case with binary variables, but our construction extends naturally to categorical and continuous

variables (see Appbndr{ ). We propose next a construction of a G-constrained NCM M(G: ) =
U V. F. P U) which is a possible instantiation of Def. I

I’

\Y =V, U:={Uc:CeC*G)U{Gy, :V; e V},

e

| log o(ov, (pay. , uj-; v, ))
{fl, = argmax;cro. 1} 95,v, + {l{}g[l _ o(dv.(pay,, uS
P(U) :={Ug ~ Unif(0,1): Ug e U} U
{Gj.v, ~ Gumbel(0,1) : V; € V.7 € {0,1}},

where V are the nodes of G; ¢ : B — (0. 1) is the sigmoid activation function; C*(G) is the set of
B - . .

C“-components of G; each !’_?p,-_y, 1s a standard Gumbel random variable [24]: each oy, (-1 0y, ) 1s a

neural net parameterized by #y, € #; pa,. are the values of the parents of ;; and uj. are the values

of Uj, :={Uc : Uc € Us.t. V; € C}. The parameters # are not yet specified and must be learned
through training to enforce L{-consistency (Def. |4).




Identifiable Non-Identifiable

Correct ID %

i
=
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=
i
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Irainimg lceration

Figure 4: Experimental results on deciding identifiability with NCMs. Top: Graphs from left to
right: (ID cases) back-door, front-door, M, napkin; (not ID cases) bow, extended bow, IV, bad M.
Middle: Classification accuracy over 3,000 training epochs from running hypothesis test on Eq.
with 7 = 0.01 (blue), 0.03 (green), 0.05 (red). Bottom: (1, 5, 10, 25, 50, 73, 90, 95, 99)-percentiles
for max-min gaps over 3000 training epochs.




Result

Figure 5: NCM estimation results for ID
cases. Columns a, b, ¢, d correspond to the
same graphs as a, b, ¢, d in Fig. 4. Top:
KL divergence of P(V) induced by naive
model (blue) and NCM (orange) compared
to PM" (V). Bottom: MAE of ATE of naive
model (blue), NCM (orange), and WERM
(green). Plots in log-log scale.




Paper 2: Interventional Sum-Product Networks:
Causal Inference with Tractable Probabilistic Models

BMotivation: tractable causal models, solve intractability and
flexibility challenge

BMethods: learning interventional distribution using CSPNs

BExperimental dataset (four toys): ASIA, Earthquake, Cancer,
Causal Health

BMajor findings: connect causality with tractable probabilistic
models by using SPNs

22



Why learn interventional pdf rather than observational pdf ?

ignoring causal change(s) in a system, i.e., the change of
structural equation(s) underlying the system, can lead to a
significant performance decrease and safety hazards.
E/ements of causal /nference

Qutcome

ahie | Resolis on IHDP and Jobs within-sample (left) '||

Covariate

Jonas Peters, Dominik Janzing, and Bernhard Schélkopf. Elements of causal inference. The MIT Press, 2017.
Shalit, U., Johansson, F.D. and Sontag, D., 2017, July. Estimating individual treatment effect: generalization

bounds and algorithms. In International Conference on Machine Learning (pp. 3076-3085). PMLR. .



What’s SPN?

Advantage

BInference tasks in
to the number

of links in the graph

BCompute joint, marginal,
or conditional probability at

Y, Y % % % X most two upward passes with

Figure 1. Left: SPN implementing a naive Bayes mixture model one netWO rk

(three components,two variables). Right: SPN implementing a

junction tree (clusters (X, X2) and (X1, X3), separator X).
H. Poon and P. Domingos, "Sum-product networks: A new deep architecture,” 2011 IEEE International Conference on
Computer Vision Workshops (ICCV Workshops), 2011, pp. 689-690, doi: 10.1109/ICCVW.2011.6130310.
Gens, R. and Domingos, P., 2012. Discriminative learning of sum-product networks. Advances in Neural Information
Processing Systems, 25, pp.3239-3247. (Outstanding Student Paper Awards)
Sanchez-Cauce, R,, Paris, I. and Diez, F.J., 2021. Sum-product networks: A survey. IEEE Transactions on Pattern Ag?lysis

and Machine Intelligence.




What’s SPN?

Could it deal with continuous outcome efficiently? #1

(e’ herdonyan opened this 1ssue 7 days ago - 4 comments

e herdonyan commented 7 days ago (2 +»

Hello, Matej. | found that NCM algorithm of Xia etc need training many times if we want to get intervention density of outcome for
same treatment variables. If outcome 1s continuous, we will need infinite networks. Could ISPMN deal with this problem?

dh 2

Owner

zecevic-matej commented 7 days agc
Yes, ISPM can deal with continuous variables. In fact, since we usually deploft Gaussian Leaf nodes Bhis is very natural and the
standard choice of modelling. The setting to NCM is different, however, since 1ISPM will assume interventional data (as they are not
parameterized SCMs but rather “partial” neural-causal model).




An overview of ISPN

Stractural Causal Model

A = LN, 10

1
F o= —A+ {10 10}
2 b i

s I
At
o

! 1
o= — 100 — A% 4 EF + A A0, 20

1041 J
I ot
M EH + A0, 10 J{
-J, Dhneity Estimation
(L;9)

—} ) —} E H -. _ = p{{Vi}¥ | dol{l; = uy} M)
* . :‘ Tee g I. S im=Prodhiis A Nebwork
®

pll | de{F = 70, 10077)

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig, and Kristian Kersting. Conditional
sum-product networks: Imposing structure on deep probabilistic architectures. arXiv preprintarXiv:1905.08550, 2019. 26




An overview of ISPN

() Graph Node

Ground Truth ‘ I
' p@ldo(@Q = B(3))) —

Figure 1: Capturing interventional distributions using iSPN. The interventional distributions for
the ASIA data set using a causal Bayesian network (CBN, small-scale gold standard, gray bars)
as well as an interventional SPN (iSPN) by intervening on [ung. The iSPN is sensible to all the
influences of the given intervention onto the system 1.e., subsequent effects in the causal hierachy.
(Best viewed in color.)




Experiment

B Comparison to Generative models B Comparison of running times

"'.[JL[}E 015 £+ .02 .' 05 £+ 1%
D ) S [ e ¥ oy 5 2 o e ¥ e by

300

Table 1: Jensen-Shannon-Divergence Evaluation of Esti-
mated Interventional Distributions. Numerical p|em:|ant to Figure 3: Mean Running Times
Fi 3: mean and standard deviation per p[I? do(V; = in sec. till convergence (Causal
U(V:))) where U is the uniform distribution across all data sets. Health) for 50 full passes. More
Lower=better. data sets results in supplementary.

28



Experiment

‘:; /, - Ground Truth == ISPN

WileaH |esned

B Precise
Estimation of

J. A uwht w1, e w0 Adl i

do-influenced
||III ‘IIIIII | III variables

B Comparison to
Generative
models

ayenbypey

A

p(Vi | do(V2 = U(V2)) p(Vi | do(V: p(V; | do(Vy = U(V

Figure 4: Generative Baselines. A comparison to the ground-truth (via underlying SCM) and
competing estimated distributions. Each row represents a data set and each column represents a
variable for a given causal query. ( Best in color.)




Experiment

Confounding Conditioning | Ground Trath® | CausalML DoWhy iSPN

No 0.0374 0.0397 0.0397 0.0397 0.0347 ATE(asia, tub)
(0.04)

No 0.9271 0.9337 0.9337 0.9337 0.9139 ATE(Burglary, Alarm)
(0.95342) %

Yes 0.6766 0.6703 0.6703 0.6697 0.6551 ATE(bronc, dysp) _ CO m pa rison

(0.667586)
Yes —0.0457 0.0537 —0.0454 0.0538 0.0545 ATE(Surgery, Recovery) to causal

{0.05)
models

ATE(T, E) := E[F | do(T = 1)] — E[E | do(T = 0)]

Figure 5: Causal Baselines. Different causal structures and corresponding causal effect estimation
methods (CausalML, DoWhy) are being compared against iSPN. When confounding is present, then
conditioning becomes different from intervening p(} X) # p(Y | do(X)) and iSPN correctly
captures all evaluated cases. (* are analytical solutions, I differences of means for actual interventional
distributions, Best viewed in color.)




Experiment

B Different Types of Intervention

L
Q
o

L

[T

"

=3

I
o
Q
-

M

Wil Ln,

# Epochs (/7)ealth — (//)obility

Figure 6: Adaptation to Different Interventions. Training results for different kinds of interventions
on the continuous CH data set. Left, the respective mean objective curves (log-likelihood), indicating
consistent training and convergence for all three random seeds ]JEI‘ configuration. Right, the (mean)
density functions for two different interventions on H: Uniform L I(a,b) “and Gamma I'(p, q) (other
interventions shown in the supplementary). (Best viewed in color.)




Limitations and further enhancements

NG (pebent)

SPN (paper 2)
Reinforcement Li/L,/ Lg Lo oy g v %
learning




Limitations and further enhancements

Limitation:

require DAG hypothesis; high dimensional problem; lack mechanism
explanation; neural inductive bias; toy experiments

Paper 1: not tractable (training one network only for one specific intervention
query)
Paper 2: learning from intervention data

Further enhancements:

address realistic and large dataset, such as MIMIC-IV and MIMIC-CXR; solve
these problem using deep learning method

make individual treatment in reality be a killer-app of causal inference

33



Thanks for watching!



Paper 3: Non-Parametric Methods for Partial Identification of Causal Effects

BMotivation: give a tight bound of non-identifiable causal
effects given data and generation hypothesis (DAG)

BMethods: causal diagram -> canonical diagram
BExperimental dataset: International Stroke Trial (1997)

BMajor findings: link between causal diagram and canonical
diagram; an efficient algorithm for bounding causal effects
from observation in arbitrary causal diagrams

P (Y | do(x) ) is non-identifiable.

35



Method

* Theorem 2. For a causal diagram G and its canonical diagram H,
consider the following conditions:

1. M is the set of all SCMs associated with G.

2. N Is the set of all SCMs associated with H where each Ri 2
R Is a discrete variable drawn from N.

Then M and N are do-equivalent.

36



Method

v | Eld y
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)
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Figure 3: {a, c) causal diagrams &; (b, d) canonical diagrams
H where exogenous variables R are explicitly shown,

Algorithm 1 INVERSEPROJECT

|: Imput: & and {7 Clye b owhere O © VL
2: {]I.Itpllt: A canonical {iiu;rauﬂ H where all EX0OZenous
variables R are shown explicitly.
For each node V' & G, add a node V' in H.
For each arrow V] — V; € G, add V; — V5 in H.
For each €, add an empty node K; in H.
For each V" = C\., add an arrow F; — V.

FE _ﬁ____'
-

Figure 4: A graphical representation of rectangles R,




Method

° P(Y|dO(X)) — Zr,z HVGV\XP(vlpaV» TV) HRER P(T)
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Algorithm

Algorithm 2 BoUNDRC AUSALEFFECT

1: Impui: Observations { ¥, = !-‘.-}i..“ 1+ 4 canomical dia-
gram H, oulcomes y, realments .
- Output: A cauvsal bound |, i over Ply dol(x))

Imitialization: set{ = 1, h = (0, LX) r, ="} {¥Wk < K, and .-r',._f" F = ag.
4: while :.". .i.'] has not converged do
Sample © | ¢ through Gibbs sampling (Eq. ( 13)).
Forevery i & R, sample ¢, | &, v (Eq. (153)).
Forevery V' € V', sample &7 | @, 7 (Eq. (16)).
iy

Compute a bound [{x. hy| over parameters 6
from &, and &, (Eq. (17)).
Let! = min{l, I}, h = max{h hxt.

- end while

diaxi @]




Result
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Figure 6: Causal bounds over the effect P(y|do(x)) of aspirin X on the death Y in the International Stroke Trial (IST). The
x-axle represents the number of observational samples. ¢m are new bounds derived by Alg. 2 (blue); bp are derived using
simple canonical partitions (red); nb are the natural bounds { ). The actual effect P(yldolx)) 1s labeled as p* ( ).
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|: Causal bounds [{, | over the interventional distribution P{y|do{x)). The optimal bounds are marked in bold




