
Treatment Effect Identification as An Out-of-Distribution Generalization
Method for Semi-Markovian Causal Model

Abstract

Evaluating treatment effect plays a vital role in
individual medicine in which the interpretability
of the prediction model is critical due to unob-
servable confounders. The challenge is to guaran-
tee consistency when generalizing over unknown
distributions. However, current researches mainly
focus on treatment effect estimation on specific
hypotheses. Identification from structure hypoth-
esis, as the base of estimation, has not been em-
phasized and integrated into the treatment effect
estimation framework. In this paper, we introduce
graphical identification methods to create predic-
tors automatically and transform the data distribu-
tion specification task into prediction task which
was well handled by deep learning. It will take
the unknown common cause variables and hidden
mechanisms into consideration without modeling
them directly. Then we propose a treatment effect
estimation algorithm based on identifiable semi-
Markovian causal model. The estimator created
by identification outperformed the traditional esti-
mator in our linear out-of-distribution testing. The
experiment results show the potential ability of
complete identification methods to generalize over
unknown distribution.

1 INTRODUCTION

In the individual medicine domain, predicting an individ-
ual’s response when specific treatments are assigned or not
is a critical problem for precision medicine and individual
therapy. Learning from observational data to predict individ-
uals’ potential outcomes has been emphasized these years
due to the accessibility of many clinic data. However, the
point of existing methods, such as Louizos et al. [2017],
Atan et al. [2018], and Bica et al. [2020], is focusing on

finding function families of more accurate estimators from
specific identification result following proposed hypotheses,
rather than creating estimators and combined them from
identification result automatically.

Traditional regression models do regression and predict the
expectation of the potential outcome of different treatments
from covariate and treatment directly, such as T-learner,
S-learner, and X-learner. Such a model requires an uncon-
founded assumption that no confounder exists between treat-
ment and outcome. Louizos et al. [2017] assumes a hidden
common cause among covariate, treatment, and response.
Their method models and learns the latent common cause to
compute causal effect, although the causal diagram of this
proxy-variable assumption is not identifiable if the invert-
ibility of some matrix is not satisfied Lee and Bareinboim
[2021]. Atan et al. [2018] indicates that treatment bias may
exists due to the hidden common casue between covariate
and treatment. The individual treatment balancing by their
bias removing network is similar to propensity score method
Rosenbaum and Rubin [1983] which is an “efficient estima-
tor of the adjustment estimand” Pearl [2009] to help deal
with high dimension problem of covariates’ representation
space. The equivalence of identification between propensity
score and adjustment formula was proved in Pearl [2009].
Wang and Blei [2019] and Bica et al. [2020] add mutil-cause
assumption based on causal diagram of adjustment graph
and learn substitute confounder to do causal inference. The
mutil-cause assumption means confounder between treat-
ments and potential outcome has at least two children that
are treatments.

However, all these models can be seen as semi-Markovian
causal models with three classes of variables (covariate,
treatment, and outcome) with some hidden common causes,
as shown in figure 2. We also demonstrate the causal dia-
grams and identified results of those hypotheses in figure 2.
And grouping variables into three classes ignore the com-
plex causal mechanisms inside the class and cross those
class. For example, if clinic data didn’t satisfy unconfound-
ness assumption and the true mechanisms can be represent
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by napkin model as figure 1, the identification methods they
used, such as back-door or front-door, may not be able to
identify the treatment effect without the invertibility of some
matrices Lee and Bareinboim [2021]. Also, identifying ev-
ery structure hypothesis should not be a human job because
the ADMG number increase with the rate of Θ(2N

2

) where
N is the number of observable variables (Appendix B). Also,
out-of-distribution challenges from parametric intervention
Wang et al. [2021a] and exogenous distribution shifting that
was reflected in the data is not considered in those works.
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Figure 1: Example of napkin graph. D means dopamine;
B means brain environment; G means unobserved
gene/physique; E means social environment not easy to
measure. S means smoking behaviour, and C means cancer.
For example, E → D may represent some life pressures,
and E → S may be unconscious mimic nature.

In this paper, what we do is to automatically create estima-
tors that can be learned by deep learning from identification
results and then estimate causal effect to attain unbiased esti-
mation results. And we will use prediction error distribution
as proxy of original conditional distribution, to estimate the
treatment effect leveraging the causal factorization.

Our main contributions are as follows. First, we formulate
Intervention Confidence Expression Graph (ICE Graph) to
represent intervention query. The leaf nodes are perdition
error distribution and prediction model, the non-leaf nodes
are responsible for out-of-distribution generalization ability.
Second, we propose an learn and inference algorithm using
Mont-Carlo method for ICE Graph to attain likelihood of
causal query and develop a novel treatment effect estimation
algorithm to create automatic estimators. It enables robust-
ness for unknown distribution and we evaluate it in both
continuous and discrete setting.

2 RELATED WORKS

2.1 TREATMENT EFFECT ESTIMATION

Traditional treatment effect estimation is often based on
specific hypotheses without explicit inductive bias, such as
causal diagrams. Most works about treatment effect estima-
tion divide observed variables into three groups (covariate,

treatment, and outcome) to attain an estimator for causal
effects, such as ATE, CATE, and ITE.

In traditional Baysian estimator, we use covariates and
treatments to estimate potential outcome, P (Y (t)) =
P (Y |T,X). The idea of this Baysian estimator is intuitive.
However, there are two weakness of such estimator, it pre-
sumed that the covariate and treatment is independent and
there are no hidden common cause. CEVAE Louizos et al.
[2017] and Deconfounder Wang and Blei [2019] use proxy-
based based estimation methods. where use back-door crite-
rion to condition on proxy of hidden common cause. How-
ever, proxy-based methods may requires some invertible
mechanism Lee and Bareinboim [2021]. Deep-treat Atan
et al. [2018] is focusing on remove direct influence from
covariate to treatment to debias.

Despite of identification of specific assumptions, improving
estimator performance is also important.

Künzel et al. [2019] model factual and counterfactual sepa-
rately. T-learner estimate treatment effect based treatment
or not independently. X-learner estimate Y (0) and Y (1) for
all individuals, and then compute treatment effect.

2.2 CROSS-LAYER IDENTIFICATION

Identification strategy in this paper is to transform the
queries of estimand Imbens and Rubin [2015] (such as
P (Y (t)) and P (Y (t)|X)) into conditional, marginal and
interventional probability estimations that are computable
from observational data.

Identification from observation data for treatment effect es-
timation is feasible if the data satisfy some assumptions.
Potential outcome framework Imbens and Rubin [2015] of-
ten requires ignorability, positivity, and stable unit treatment
variable assumption (SUTVA).

Treatment effect identification is also practicable if we as-
sume causal structure constrains the data generation mech-
anism rather than the data itself. In 2002, Tian and Pearl
[2002a] proposed a sound graphical identification algorithm
based on c-factorization for unconditional causal effect esti-
mation. Shpitser and Pearl [2006] proved the completeness
and soundness of the hedge criterion and proposed ID and
IDC algorithms for unconditional and conditional effect
identification, respectively. The soundness and complete-
ness of those two algorithms are also proven by Shpitser and
Pearl [2006]. Huang and Valtorta [2006] proposed another
complete and sound identification algorithm in the same
year independently.

Recently, there are also proxy-based works for the identifica-
tion of intervention queries. Xia et al. [2021] defined neural
effect identification and proved the equivalence between
traditional graphical identification and neural identification.
Lee and Bareinboim [2021] connected c-factorization and
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Figure 2: Causal graph of related works. In those figures, we use X to denote covariates, T to denote treatment assign-
ment, Y to denote outcomes, and Z to denote proxy of hidden variables. The identification for P (Y (t)) in figures are
P (Y |T ),

∫
z
P (z)P (Y |T, z)dz,

∫
x
P (x)P (Y |T, x)dx, and

∫
z,x

P (z, x)P (Y |T, z, x)d(z, x) respectively. The identification
for P (Y (t)|X) in those figures are P (Y |T,X),

∫
z
P (Y |T, z)P (z|X)dz, P (Y |T,X), and

∫
z
P (Y |T, z,X)dz . We empha-

sise that Z of deconfounder means proxy of mutil-cause confounders, not including single-cause confounders.

matrix equation and proposed a sound identification algo-
rithm that leveraged the advantages of existing approaches.

3 BACKGROUND AND NOTATION

Notation Black letters denote variable set, and calligraphic
letters denote mechanism transformation and exogenous dis-
tribution shifting. Larger letters indicate variable or mecha-
nism, and small letters represent the specific assignment of
variable or mechanism. For consistency with other works,
we use V = (X,T,Y) to denote the set of endogenous
variables, which includes observable covariates X, treat-
ment variables T, and outcome variables Y. Further, we
use U to denote exogenous variables. We use F to denote
assignment function set of random variables andW to de-
note the set of perturbations or transformation that induce
out-of-distribution problem.

3.1 SEMI-MARKOVIAN CAUSAL MODEL

The connection of the semi-Markovian causal model and
causal Bayesian network with hidden variables can be seen
in Tian and Pearl [2002b]. Before we introduce the semi-
Markovian causal model, we will first define acyclic directed
mixed graphs.

Definition 1. Acyclic Directed Mixed Graphs (ADMG):
an ADMG is a tuple (V,D,B), where V ∈ V is a vertex
in the graph, D ∈ D is a directed edge, and B ∈ B is a
bi-directed edge. The constrain of ADMG is that there is no
directed circle in ADMG, which means the subgraph (V,D)
of ADMG (V,D,B) is a directed acyclic graph.

The ADMG describes the assignment procedure of endoge-
nous variables with hidden confounders. Directed edge

means the head variable of an arrow is an input of the tail.
Bi-directed edge means the tails of bi-directed edge have a
common noise as the input of their assignment procedure.
Each variable without bi-directed edges has a noise variable
as its parent, but we usually do not plot them explicitly for
simplification. The nonparametric ADMG didn’t indicate
the specific function or distribution among those variables.
The instantiation of ADMG is called semi-Markovian causal
model or semi-Markovian model.

Definition 2. Semi-Markovian causal model: a semi-
markovian causal model is defined by a tuple (G,F,U),
in which G is the causal diagram of the model which is
an ADMG, F is the assignment program of each variable
and U is set of distributions of hidden confounders and
independent noise.

Figure 2 give examples of the ADMG and some possible
mechanisms for corresponding semi-Markovian models. We
emphasize that the assignment functions are distinct because
if variable A and variable B have the same assignment
function, they should be represented as one variable in the
graph.

3.2 IDENTIFICATION

Then identifiability of an estimand in semi-Markovian
model can be defined as follows,

Definition 3. Identifiability: let Q(Y, T, C) be any esti-
mand, such as P (Y (T )), P (Y (T )|X). We say that Q is
identifiable in semi-Markovian causal model set M with
same causal diagram G if for any pair of models m1

and m2 from M, q1 = Qm1 = Qm2 = q2 whenever
Pm1(v) = Pm2(v) > 0. For simplicty, we called it QG

is identifiable.
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A direct corollary of definition 3 is as following,

Corollary 1. If QG is the value set of identifiable queries,
and PG(V ) is the value set of PG(V ). Then there exists a
projection I : PG(V )→ QG that QG = I(PG(V )) when
PG(V ) > 0.

Proof. Due to definition 3, for any identifiable QG ∈ QG,
there exist unique QG corresponding with PG(V ). So there
exist projection I from PG(V ) to QG.

The process of finding such projection is identification. We
should notice that the projection I ∈ I might have differ-
ent forms. However, for specific estimand QG(Y,T,C),
I1(PG(V )) = I2(PG(V )) if it is identifiable.

What we should notice is that for same observation P (V )
and different causal diagrams G1 and G2, the identifica-
tion result may be same. That means, for some cases,
QG1

(Y, T, C) = QG2
(Y, T, C). For example, there are

only five different identification results for query P (Y (T ))
in three variables cases with hidden confounders of all 200
ADMG (Appendix A): not identifiable (41 ADMG), P (Y )
(128 ADMG), P (Y |T ) (24 ADMG),

∑
x P (x)P (Y |T, x)

(6 ADMG),
∑

x P (x|T )
∑

t P (Y |t, x)P (t) (1 ADMG).

4 INTERVENTION CONFIDENCE
EXPRESSION GRAPH

4.1 INTERVENTION EXPRESSION GRAPH

Now, we will introduce the tool we will use to perform
causal inference among observation data. Theorem 1 give
the definition and expressiveness of the intervention expres-
sion graph.

Theorem 1. Intervention Expression Graph: In any semi-
Markovian model M(G(V,D,B),F,U), let a topological
order π over G is V0 < V1 < ... < Vn where V0 = ∅
and denote variables set {V0, V1, ..., Vi} to V

(i)
π . For any

identifiable intervention query PrM (Y(T)|X), there exist
an directed acyclic expression graph with only one root, in
which any leaf nodes α ∈ {PrM (Vi|V(i−1)

π )} and any non-
leaf nodes β ∈ {

∫
Vc

(∗)dVc, (∗)−1,
∏
(∗)} where Vc ⊆

V. Pr can be probability or probability density.

The basic idea to prove theorem 1 is to represent the condi-
tion probability following a topological order of G and build
the expression graph from bottom to top by running the IDC
algorithm, which is complete to identify any intervention
query with condition Shpitser and Pearl [2006], including
continuous variables Tikka and Karvanen [2018]. And the
conditional probability calculation in non-leaf nodes can be
replaced by

∫
Vc

(∗)dVc and (∗)−1. Thus, an intervention
expression graph for the intervention query will be created.

An expression graph can not only be built by graphical
identification methods; it can also be determined by other
identification strategies, such as unconfounded assignment
mechanism (also ignorable)Imbens and Rubin [2015] if the
query is identifiable based on such identification strategies.
Although possible ADMG number is enormous, correspond-
ing intervention expression graph number may be far smaller
(Appendix A). So given estimand, learning expression graph
can be easier than learning causal structure.

We use
∑

Vc
(∗) to denote

∫
Vc

(∗)dVc and
∑

Vc
(∗) in the

following part for simplicity. To make it clear, two exam-
ples of expression graphs which are determined by IDC
algorithm for napkin case and determined based on uncon-
foundenss were given in Figure 3 and Figure 4. And figure
3 can be further simplified as figure 5.
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Figure 3: Expression graph of napkin

4.2 INTERVENTION CONFIDENCE GRAPH

Based on theorem 1, we can rewrite any identifiable interven-
tion query into an intervention expression graph. However,
there are still challenge we should deal with: the conditional
distribution forms of leaf nodes are difficult to specify and
learn, especially for sparse data.
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Figure 4: Expression graph of unconfoundness
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Figure 5: Simplified expression graph of napkin

4.2.1 Prediction model as proxy of data

Inspired by Friston [2009], we use the prediction and error
distribution as a proxy of original conditional probability to
address the first challenge. The hypothesis is that prediction
and prediction error of Vi are conditionally independent
given condition variables V

(i−1)
π . So that distribution of

Vi given V
(i−1)
π can be separated into prediction function

and error distribution for continuous variables and can be
modeled as categorical distribution for discrete variables as
following,

Vi =

{
hi(V

(i−1)
π ) + ϵi if Vi is continuous

Cati(Ki,
−→
Pi(V

(i−1)
π )) if Vi is discrete

(1)

where hi is the prediction function which input is V (i−1)
π

and output is Vi, ϵi is the distribution of prediction error
that is also determined by V

(i−1)
π , and Cati is the proxy

categorical variable which is determined by V
(i−1)
π , Ki

is the value number of Vi. Here, we emphasise that the
prediction function is not an assignment mechanism. It only
represents a bi-directional equation relationship rather than
a causal relationship. So, our hypothesis is not inconsistent
with the causal diagram and causal assumptions.

For specific value vi and v
(i−1)
π , we can calculate probability

or density,

Pr(vi|v(i−1)
π ) =

{
fϵi(vi − hi(v

(i−1)
π )) if Vi is continuous

pi(vi|v(i−1)
π ) if Vi is discrete

(2)

where fϵi is the probability density function of ϵi and pi is
probability of Vi = vi given V

(i−1)
π = v

(i−1)
π . For example,

figure 6 is the ICE Graph of query P (Y (T )) in ADMG
napkin.

From equation 2, we can transform the data distribution
specification and parameterization into prediction (such as
regression and classification) problems. The prediction per-
formance in high dimension has been well handled in many
fields under IID assumption based methods like deep learn-
ing Pouyanfar et al. [2018]. As for prediction error distri-
bution, it is often to be Gaussian-like distribution, which
is more easier to parameterize than data distribution. The

number of possible ADMG is enormous, but the number of
corresponding intervention expression graphs is far smaller
for certain estimand. So learning ICE Graph can be helpful
to ease the misspecification problem.

4.2.2 Learning

Two parts need to be determined in our ICE Graph: the
intervention and the association parts. The learning goal
of association parts is to improve predictors’ performance
under IID assumption and traditional matrices (such as F1-
score, etc.). In comparison, the intervention part is to get an
unbiased estimation of estimand with acceptable variance
from predictors. Usually, the intervention part can be made
directly by symbolic algorithms like IDC, but it can also
be built by assumptions in potential outcome framework
and even pure neural parametric methods Xia et al. [2021].
Association learning is to learn the prediction model and the
confidence distribution of leaf nodes, which will influence
the variance of the final estimation result.

Algorithm 1 is our learning algorithm for ICE Graph. There
is two-step learning: intervention expression learning and
association learning. The intervention expression learning
transforms an estimand into estimations and creates pre-
dictors for the association layers. Then we will model the
predictors and learn them from the data. Finally, we give
those predictors in the association layer and the structure of
intervention part.

Algorithm 1: Intervention Confidence Expression
Graph (ICE Graph) Learning
Input :Data set D, ADMG G, Query Q(Y, T, C)
Output :ICE Graph G with Predictor set

P = {(fi, ϵi)}ni=1

1 G := IDC(G, Q);
2 G := Simplify(G);
3 P := LearnPredictor(G,D);
4 return G, P

4.2.3 Inference

There is still one technical challenge to inference likelihood:
the integration or summation calculation. Here, in our infer-
ence algorithm 2, the Monte-Carlo method is used to put
the marginal operator on distribution to attain the likelihood
of such query.

Similarly to the completeness of 2, algorithm 1, 2 is com-
plete to calculate any identifiable intervention query’s likeli-
hood.

Theorem 2. Algorithm 1,2 is sound and complete to com-
pute likelihood of any identifiable estimand Q(Y, T, C) in
any semi-Markovian model with ADMG G.
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Figure 6: ICE Graph of napkin

Algorithm 2: Intervention Confidence Expression
Graph (ICE Graph) Inference
Input :Sample x = {y, t, c}, ICE Graph G with

Predictor set P = {(fi, ϵi)}ni=1

Output : likelihood p for sample x

1 a := Root(G);
2 if a =

∏
(∗) then

3 return
∏

i Inference(x, subi(G, a));
4 else if a = (∗)−1 then
5 return Inference−1(x, sub(G, a));
6 else if a =

∑
VC

(∗) then
7 X = repeat(x, len(VC));
8 X.Vc = VC ;
9 return

∑
i Inference(Xi, sub(G, a));

10 else if a =
∫
Vc
(∗)dVc then

11 Vc = UniformSampling(VC);
12 X = repeat(x, len(Vc));
13 X.Vc = Vc;
14 return

∑
i Inference(Xi, sub(G, a));

15 else if a is leaf then
16 return ϵa(x);

Proof. For any identifiable estimand in any semi-Markovian
model, the intervention part can always be built due to the-
orem 1 and completeness of IDC. From the law of large
numbers, we know that the Monte-Carlo method in algo-
rithm 2 is unbiased for any query. So, algorithms 1,2 can
learn from observational data and calculate the likelihood
of any identifiable estimand.

For example, P (Y (T )) is often the interest estimand in
reality. The expected outcome of Y (T ) can be estimated
with slight structure bias and controlled variance from both
predictors and structure of ICE Graph as algorithm 3.

The intervention part of the confidence graph can deal with
any structure bias that was introduced by causal structure
among variables in real world, such as confounding bias,
selection bias, M-bias, mediation bias, once we define the

Algorithm 3: Treatment Effect Estimation Algorithm
based on ICE Graph
Input : individual covariate x; ICE Graph G with

Predictor set P = {(fi, ϵi)}ni=1 for Query
Q(Y, T, ∅)

Output :maximum likelihood outcomes of Y (0) and
Y (1)

1 P0 = ∅, P1 = ∅;
2 S = {(t, y)} ← UniformSampling((T, Y ));
3 for (t, y) ∈ S do
4 p← Inference(G, (y, t, x));
5 if t = 0 then P0 = P0 ∪ {(p, y)} ;
6 else P1 = P1 ∪ {(p, y)} ;
7 end
8 Ex(Y (0)) = argy max p ∈ P0;
9 Ex(Y (1)) = argy max p ∈ P1;

estimand that we want to estimate in the situation of inter-
ventionism causality and give ADMG candidates. The gener-
alization ability of out-of-distribution is attained only from
intervention part which is built by identification strategies.
Also, intervention part may affect the variance of estimation
result.

The association layer is one source of estimation vari-
ance. Predicting more accurately often introduce more accu-
rate intervention estimation. The requirement of predictors
(P (Vi|V (i−1)

i )) is to get smaller variance, which means our
prediction model should be as accurate as we can and keep
generalization in the IID data set by train/valid/test split-
ting. In some cases, the counterfactual problem can be seen
as missing data problem in observation layer if we add all
potential outcome (such as Y (1), Y (0)) as endogenous vari-
able of the semi-Markovian model.

Actually, neural methods Xia et al. [2021] and mixed meth-
ods Lee and Bareinboim [2021] can also be used for identi-
fication to create such an ICE Graph.
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4.2.4 Confidence of Predictor

The σ of error distribution can be learned by variational and
reparameterization methods Kingma and Welling [2013]
where prior of σ will be set to sample variance of prediction
error. Based on confidence graph, we can calculate any
likelihood of P (y(t)|x) given x, y, t.

There are mainly three advantages of our algorithms. First,
our estimator is unbiased, without any structure bias (con-
founding, selection, M-bias, mediation), and efficiently anal-
yses the variance’s source. The unbiased estimation is from
identification and sampling. The Second is that the estima-
tor in our algorithm has better interpretability and recon-
figurability. Every predictor has a specific meaning which
indicate a conditional probability. They can be reused for
other estimand due to the information that include in the
predictor. Third, we transform the problem of learning data
distribution of real world into adjusted prediction task with
confidence distribution where input is V (i−1)

π , and output is
Vi.

5 ROBUSTNESS METRICS

5.1 PARAMETRIC INTERVENTIONS
ROBUSTNESS OF ESTIMATORS

Now, we consider the matrix of parametric interventions
robustness Wang et al. [2021a] in the semi-Markovian
model for causal effect prediction. To measure different
aspects of out-of-distribution generalization ability, we
define exogenous robustness, endogenous robustness for
the semi-Markovian model respectively, based on indepen-
dent mechanism assumption. This assumption allows us
to rewrite the assignment function v := fv(Uv, Pav) into
v := fv(g

1
v(u

1
v), ..., g

k
v (u

k
v), g

1
v(pa

1
v), ..., g

h
v (pa

h
v )). We call

giv(u
i
v) outer mechanism (OM), gjv(pa

j
v) inner mechanism

(IM),fv composition mechanism (CM), and uv outer distri-
bution (OD).

Definition 4. Exogenous robustness: denote S to be pa-
rameters space of gV (UV ), S1 to be parameters of semi-
Markovian model M1 in learning domain, and unknown
transformation C is defined in space S. Denote E to be
an estimator of treatment effect. The performance of E in
the testing domain M2 which parameters of gV (UV ) are
CU (S1) and other parameters are fixed, reflects exogenous
robustness of E.

Similarly, endogenous robustness can be defined by a trans-
formation CV in parameters space of gV (PaV ).

In our ICE Graph, mechanisms that generate the data and
statistics are disentangled into independent components.
The intervention domain keeps invariant for parametric in-
terventions, although the prediction domain is shifted due

to mechanism changes. Such invariance helps us perform
better in an unknown situation that was induced by trans-
formation C and modularly reconfigure the model in a new
environment.

6 COMPARISON AND CONNECTION
WITH OTHES

The traditional potential outcome framework to deal with
causal questions is to propose estimand from interest prob-
lem and manually factorize the estimand into estimations by
assumptions or independence. Then build a model and learn
from data to attain estimations for answering the estimand.
However, such causal inferences are very tricky, and it is
challenging for a human to factorize general estimand from
hypotheses when there are more than three class endogenous
variables except for cases with specific patterns. Specific
examples of such methodology has been introduced in the
related works.

Another direction to answer the causal query is pure neural
methods Papantonis and Belle [2021]Xia et al. [2021]. The
basic idea is to use truncated distribution or causal mecha-
nism assumptions as regularization terms or constrain terms.
Xia et al. [2021] is trying to answer the causal questions by
using pure neural methods end-to-end, and they prove the
existence of such a pure neural method which is complete.
However, they didn’t give a methodology for finding such
function forms as data prior for different data distribution.
Also, the method that uses symbolic identification judge-
ment first and then estimation is indicated in this paper, but
the core function of symbolic identification is to factorize
the intervention query into smaller observation queries for
building intervention expression graph if the query is identi-
fiable, and return hedge which wit the non-identification of
such query, rather to judge a query with causal diagram is
answerable or not. The advantages of symbolic identifica-
tion are not leveraged very much. Another weakness of their
algorithm is that whenever we change the value of variable
in query, we have to learn the model again, which inducing
low re-usability of existed models and make it very hard to
be applied to continuous cases.

Causal representation learning is to find causal variables
from high dimension space. Structural decoder Leeb et al.
[2020] is to create hierarchical coders, which is similar to
our idea is of learning topological models in the associa-
tion layer firstly. The difference is that our variables and
topological order is presumed, and their topological order
and variables are learned from reconstruction process. How-
ever, identification of query in diagram is not considered in
the structural decoder which is very important to remove
structure bias inside those coders for answering arbitrary
intervention query. There are also other disentangled meth-
ods to create disentangled representation, such as Causal-
VAE Yang et al. [2020], stable learning Zhang et al. [2021],
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Figure 7: OOD experiment error. Star is median value. Red line is average value.’S’ means mechanism shifting, and ’T’ is
random transformation of mechanism.

and IP-IRM Wang et al. [2021b]. Our learning algorithm
1 requires causal structure to build ICE Graph, so causal
discovery Xie et al. [2020] will also be helpful.

7 EXPERIMENT

The experimental properties we are interested in about our
model and algorithm is OOD generalization under paramet-
ric interventions from correct identification comparing with
pure prediction. It can be measured in two aspects: OOD un-
biasness and variance. If the estimand is E(Yi(1)− Yi(0)),
then we can use ATE and PEHE as unbiasness and variance
measurement respectively.

In our experiment, we use the linear napkin model (same
structure with figure 1) as a real-world model to generate
data and test the out-of-distribution generalization ability.
Each predictor of our association layer model is linear re-
gression or classification model. To keep the consistency
with X-learner, we also use two models for treatment and
control group separately. We use random transformation
and shifting of mechanisms as parametric intervention to
test the robustness of our framework. For every setting, we
run 50 independent experiments to evaluate the result where
there are 1000 samples totally in each experiment. Other
experiment details can be found in Appendix C. Although
nonlinear model is not used in our experiments, it can still
work if there are nonlinear predictors and environments.

Figure 7 shows the experiment results. We should notice that

in-sample testing is not IID testing due to the missing coun-
terfactual data, and our out-sample testing is under those
parametric interventions. In unbiasness testing, our estima-
tions are more unbiased than MR Freedman [2008] and INT
Lin [2013] from ATE estimation result in both discrete and
continuous cases. Considering estimation variance, it got
better performance when outer mechanisms are changed.

8 CONCLUSION

In this paper, we propose an auto estimator framework for
arbitrary identifiable estimand. It can combine the IID gener-
alization ability of deep learning and robustness from iden-
tification strategies which is the core of causal inference.
We test our idea in both discrete and continuous cases. It
has little bias in all our settings and has little variance when
outer mechanisms are transformed to unknown situation.

There are still many things that are needed to be improved.
For example, summation and integration calculation will
cost many resources and mechanism changing data may be
difficult to attain in reality.

Finally, to solve the challenges in reality (such as individual
treatment evaluation, and auto science), causal inference
should combine with deep learning to better utilise the com-
puting resources and big data, so that we can narrow the
causal bound and reduce variance further. At the same time,
we have to keep the critical idea of causal inference, such as
cross-layer identification over Pearl’s Causal Hierarchy.
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A ADMG IDENTIFICATION OF THREE
VARIABLES

We divide causal diagrams with same directed edge into one
sets, then we have 25 sets (DAG number) in which there are
8 ADMG in each set (totally 200 ADMG).

First, there are 128 ADMG (16 sets) where there are no
directed path from T to Y . From rule of deletion of action,
we got P (Y (T )) = P (Y ).

Second, for 32 ADMG which include both directed edge
T → Y and birected edge T ↔ Y , they are not identifiable
because they include such ’bow arc’.

Third, consider Y-rooted C-tree. There are directed edge
T → Y , and birected path T ↔ X ↔ Y , but not include
birected edge T ↔ Y . Because T is in this tree, so those 4
ADMG include such a Y-rooted C-tree is not identifiable.

Forth, consider DAG T → X → Y , there are 5 ADMG
with such DAG is not identifiable.

From rule of action/observation exchange, there are 24
ADMG is identifiable, and we got P (Y (T )) = P (Y |T ).

From back-door directly, there are 6 ADMG is identifiable
and we got P (Y (T )) =

∑
x P (Y |T, x)P (x).

From front-door directly, there are 1 ADMG is identifiable
and we got P (Y (T )) =

∑
x P (x|T )

∑
t P (Y |t, x)P (t).

So, finally, there are 128 ADMG whose identification
results are P (Y (T )) = P (Y ), 41 ADMG that is
not identifiable, 24 ADMG whose identification results
are P (Y (T )) = P (Y |T ), 6 ADMG whose identifi-
cation results are P (Y (T )) =

∑
x P (Y |T, x)P (x), 1

ADMG whose identification results are P (Y (T )) =∑
x P (x|T )

∑
t P (Y |t, x)P (t).

B ADMG NUMBER

ADMG is determined by DAG with additional birected
edges. The increasing ratio of DAG number is O(3N ), and
each DAG will have 2

N(N−1)
2 possible birected edges com-

binations. So the ADMG number increases with the ratio
Θ(2N

2

).

C EXPERIMENT SEETING

The train sample number is 800, and the train/valid splitting
is 640:160. The test sample number is 200. In algorithm
2 and 3, the sampling numbers of X1 and (Y, T ) are both
100. The dimension of every variable is 1. In optimization,
the max epoch is 100000, and we will stop if there is no
decrease of loss above 20 and 100 epochs for continuous and
discrete testing, respectively. The loss function is MSE loss
for regression and Cross Entropy loss for classification; the

learning rate is 0.001. When positivity is not satisfied or the
joint distribution is zero, we will resample data. The T are
discrete variables and X2 and Y are continuous variables.
X1 can be continuous or discrete variable. We don’t use
variational method to fitting function of error variance, and
use prior noted in the paper directly due to convenience.
All the experiment are independent. Figure 8 shows some
continuous data. In those figures, left part is train data, and
right part is testing data. Yellow and purple means different
treatment assignments. And z-axis is value of Y.
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Figure 8: Some samples of generated data
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