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I. MOTIVATION

Dimension reduction can mitigates curse of dimensionality
and provide visualization approach to understand our data.
It usually transforms the original high-dimensional data into
low-dimensional data while minimize some information loss
to preserve key properties. And we often work over low-
dimensional space to leverage them, such as independence
among dimensions, that is not significant in high-dimensional
space. Also, we need to make a trade-off between redundancy
and causal semantics in dimension reduction. However, causal
information emerges in low dimensions space and labels space
is rarely considered explicitly. If we preserved causal infor-
mation among low-dimensional coders and labels, it would
help us attain a quantitative understanding for causal effect
of one dimension to another dimension. For example, we can
generate low-dimensional intervenable and interactable coun-
terfactual coders from medical images (chest X-ray images,
etc.) for open scrutiny by experts to reveal potential bias of
our model. Without such generating relationships over low-
dimensional features and labels, it would be tremendously
difficult for experts to understand the causal information rather
than spurious correlation relationships of our low-dimensional
representation.

We want to maximize the ’causal information’ in low-
dimensional data to find the most suitable dimension K. There
are two challenges of adaptive causal dimension reduction.
The first challenge is how to define ’causal information’ of a
low representation. It means that we must find some formulas
to judge which dimension is better than others under causal
semantics. The second challenge is the exponential increase of
possible causal structures with the increase of representation’s
dimensions and labels number.

In this report, we introduce detailed aspects of causality
and traditional dimension reduction techniques in section II
and section III. Then we formulate our research questions and
illustrate methods we plan to adopt in section IV. Finally, we
present some obtained result and propose our future plan in
section V and section VI.

II. SURVEY OF CAUSALITY

A. Notation from statistic
In 1923, Neyman published his master paper [1], but it was

not been translated into English until 1990 [2]. He used the
term ”unknown potential yield” to indicate the missing ”poten-
tial outcome” in his randomization experiment for evaluating

crop varieties. The Rubin causal model was first named by
Holland in 1986 [3]. In Rubin causal model, the first thing
is to define interested estimand (potential outcome), and then
design assignment mechanism before outcome are measured.
Then build a model to do analysis.

There are some basic assumptions in potential outcome
framework. Stable unit treatment value assumption (SUTVA)
[4] states that unit/individual/sample should be independent
from each other and the treatment effect for an individual is
stable. Strong ignorablity [5] means that treatment assignments
probability should be positive for every treatment value and
every individual, and assignment mechanism should be inde-
pendent of potential outcomes. Consistency requires subjects’
response for specific treatment in experiment study is the same
as outcome in observation study.

Recently, people are trying to find weaker assumption of
strong ignorability, such as single strong ignorability [6] [7],
sequential single strong ignorability [8]. Those assumptions
requires the number of treatment should be more than one
and make assumption of non-existence of multi cause hidden
confounder.

Some other works focus on sensitivity analysis of causal
inference to provide confidence interval [9]. For example,
Rosenbaum’s sensitivity parameter [10] Γ and Bahadur [11]
efficiency were proposed. They try to separate analysis for
exogenous factors from models.

B. Hypotheses from philosophy

Pearl proposed structure causal model and develop related
theory, where variables were generated by endogenous vari-
ables and exogenous variables [12]. The uncertainty is only
from exogenous variables which means the value of effect
totally depended on his parents nodes if the value of noise term
is fixed. He assumes there exist directed functions that every
observable variable will be generated by something, whatever
they can are observable or not. Form the view of potential
outcome frameworks, Pearl’s study of intervention is valid
supplement when treatment assignment probability can be set
as zero and one.

C. Intervention identification and approximation

Intervention identification can transform the query about the
interest effect of given intervention to operational intervention
and observable observation. If it is not identifiable, then we
can use approximation methods to get a bound of causal effect.



Identification formulas for causal diagram were developed
in the last 30 years based on the definition of Pearl’s structure
causal model. Back-door adjustment, front-door adjustment,
and do-calculus for DAG (Directed Acyclic Graph) were
named and the proof of those theorems were given in [13]
[14] formally. However, the approach of such identification
doesn’t consider unobservable confounder and automatic iden-
tification algorithm. The completeness of such identification
methods was also not given. In 2002, [15] proposed a complete
criterion ”c-factorization” for singleton treatment and single-
ton outcome. [16] and [17] proposed complete identification
algorithms (Huang’s algorithm and Shpiser’s ID algorithm)
to transform intervention query without condition variables
into function of observation distribution automatically for
multiple treatments and outcomes in Bayesian network with
hidden variable and semi-Markovian model respectively. And
[18] proposed IDC algorithm for intervention query with
condition and proved the completeness. But all those identifi-
cation methods doesn’t consider the undirected edges (stable
symmetric relationships). In 2019, [19] proposed complete
identification algorithm for segregated graph to address on
such patterns. Also, there are other identification algorithm
for causal diagrams with loop [20].

However, it is also meaningful to not assume any inter-
vention on those variables is impossible because active inter-
vention will introduce information that observation can’t give
us. [21] defined z-identifiability and proposed complete IDz

algorithm to address on problem that any combination of ex-
periments on Z can be performed and observable distribution
is known for query without condition variables. [22] defined
g-identifiability and proposed gID algorithm. It can factorize
the original intervention query into expression of intervention
distribution of Z and it doesn’t need any observational data.

Recently, researchers start to notice it is not the only way
to solve the identification problem from the view of SCM
(structure causal model) directly. [23] revealed the connection
between matrix theory and traditional identification. And they
proposed an algorithm that leverage proxy-based methods and
traditional methods. Neural identification was first been pro-
posed and theoretically analysed in [24] and they also proved
the completeness of their neural identification algorithm which
use convergence of maximization and minimization of same
neural network with intervention constrain as indicator. How-
ever, such neural identification need to retrain models if the
assignment values of T and Y were changed.

Comparing with do-calculus based algorithms for structure
causal model, po-calculus [25] with single world intervention
graph (SWIG) [26] is useful complete identification methods
in potential outcome framework.

For not identifiable cases, we can still give a bound to
intervention query from observation data. For example, [27]
gives the tightest bound to graph with instrument variables.
Recently, [28] gives a more tight bound than natural bound
for general DAG by utilizing observation data.

D. Transportability and data fusion

Transportability is trying to answer intervention query when
population shifting occurred from the view of data generating
mechanism. The distribution of observable variables maybe
different and the data generating mechanism may be changed
when we apply our causal conclusion to another domain.
Generally, we will assume that corresponding population dis-
tribution is known rather than it need to be learned from
sample. [29] formally studied ”external validity” from the
view of sharing causal diagram with assignment mechanism
discrepancy of selected variable that is indicated by a variable
set S and they proposed sID algorithm which is complete to
solve this problem if joint distribution is known.

Data fusion was first proposed in [30]. The goal of data
fusion is to answer the causal effect at a given population while
the inputs are observational data, experimental data, selection
biased data, and data from dissimilar population.

However, all those methods assume that superpopulation
is known which means we doesn’t need learn a model from
limited data. This weakness is one of the largest obstacle for
application of such identification-based learning methods.

E. Causal discovery and causal representation learning

Causal inference requires causal diagram of graphical
model. However, the graphical model of real world is not
presumed generally and we need to figure out the real graphs
from the whole hypotheses space. Causal discovery is focusing
on the how to learn causal diagrams or structure causal models
from observational and interventional data. There are many
algorithms to discovery the causal diagram or causal diagram
class. For instance, PC [31], FCI [32] are independence based
algorithm. LiGANM-based methods [33] assume mechanism
is linear function with additive noise. Post-nonlinear based
methods [34] will assume the mechanism satisfies the follow-
ing function,

xi = fi,2(fi,1(pai) + ei), i = 1, ..., n (1)

where pai is parents of xi, fi,1 is an nonlinear function, fi,2
is invertible post-nonlinear function, and ei is noise. However,
causal discovery in high dimension space is still an open
problem.

Causal representation learning is focusing on the find low
dimension causal coder from high dimension data. Researches
about causal representation learning can be seen in [35]. For
example, CausalVAE [36] add a causal layer to learn linear
SCM with additive noise and mask layer to do intervention on
such coders to produce novel pictures comparing Condition-
alVAE [37]. StructureDecoder [38] learn hierarchy coders in
lower dimension to represent causal variables with topological
order in structure causal model.

However, the core non-parametric methodology of causal
inference ’identification’ was not considered in those works
now. There are still a lot of ignorance about the lower
dimension representation for high dimension variables that will
keep slightly invariant in causal information.



F. Neural networks for causality

Sum-product network was first proposed at [39]. There are
important properties of sum-product network. The first is it can
generate samples quickly and the second is it can calculate any
marginal probability of joint distribution that is learning from
joint data by one step forward propagation.

GFlowNet [40] [41] that was proposed recently also holds
those two proprieties in some degree. Also, conditional sum-
product [42] was applied in causal discovery [43] and causal
estimation [44] by intervention data.

G. Applications

Causal inference can be widely used in machine learning
and other situations for application.

For image recognition, feature disentanglement works, such
as stable learning [45] [46] [47], counterfactual attention
learning [48], and other causal inspired paper appears in recent
years.

For treatment effect estimation, [49] uses precision in esti-
mation of heterogeneous effects (PEHE) and build a dataset
IHDP to measure response effect of treatment. [50] uses
adjustment formula in their observational study about the
effect of maternal smoking to children’s autism. [51] uses text
as covariate to help estimate treatment effect.

For natural language processing, [52] shows differenct ap-
plication situation of causal inference in NLP, such as text as
outcome, treatment, and confounders.

For reinforement learning, it can be used as sample-efficient
data augmentation method [53].

H. Experiment platforms

1) Dataset: The promotion of large dataset to research is
significant and this has been proven by ImageNet. Benchmark-
ing on dataset can help us to evaluate hypothesis, algorithms,
and models. However, there are little large datasets collected
from reality for causal learning and reasoning task comparing
with computer vision and natural language processing. There
are two challenges to benchmark causal algorithms and mod-
els that is totally different from traditional correlation data
benchmarking. On the one hand, evaluate interventions often
cost far more time and money than prediction for algorithms
and models. Sometime interventions are even immoral. For
example, we can’t encourage or force someone to smoke. On
the other hand, counterfactual data can never be collected
theoretically and there is lacking of credible methodology
and enough representative researches to transform the reality
dataset into counterfactual dataset. Table I will give some
datasets that may be useful for causal tasks.

2) Packages: Another prospective for building experiment
platform is maintain unified packages in causal toolbox. It
can help researchers to propose and test novel ideas quickly,
thus promote the development of causal science. There are
many packages that implement pipeline of causal learning or
reasoning. Some of them will provide standard and state-of-
art learning and reasoning algorithms, such as causal-learn.

Related work about causal packages are illustrated in Table
II.

III. SURVEY OF DIMENSION REDUCTION

PCA [72] [73] is a linear dimension reduction technique. It
use orthogonal transformation to attain uncorrected principal
components. Auto-encoder [74] [75] is a kind of representa-
tive nonlinear dimension reduction technique. It usually use
neural networks and gradient-based optimization to learn the
parameters for efficient computation. The reconstruction error
is an important part of loss function in auto-encoders.

Recently, researchers start to notice the potential benefits if
we introduce causality into our low-dimensional representa-
tion. CausalVAE [36] introduce causality by labeled data and
prior distribution of labels. The reason they can learn the DAG
over labels is the difference of distributions between causal-
direction and anti-causal direction. However, the dimension
number of their causal layer is presumed because the infor-
mation of causality in their low-dimensional representation
is from labels directly. So they can not give a criterion to
decide how much dimension we need in our low-dimensional
representation for high-dimensional data.

IV. RESEARCH QUESTIONS AND METHODS

A. Research questions

1) : Without loss of generality, given encoders XL1
=

E1(XH) and XL2 = E2(XH), how to compare the causal
information in XL1 and XL2 so that we can make a trade-off
between causal information losing and redundancy? Specifi-
cally, if we had an encoder XL = EL(XH), how to calculate
causal information CI(XL|EL, XH) and representation size
L = H(EL|XH) to get the adaptive representation size L∗

and encoder EL∗?
2) : The computation of causal information is highly prob-

able to be exponential scale due to potential causal structures
number. How to compute and find the optimum scale of low-
dimensional representation efficiently?

B. Methods

1) Causal information: In causality, many algorithms based
on causal sufficiency assumption, causal faithfulness assump-
tion, and causal Markov assumption. However, those assump-
tion was not always satisfied. For causal information calcu-
lation in our low dimension representation, we decide to use
deduction methods from all non-parametric causal model using
modern computing device and hypotheses testing methods to
gain a measurement to decide the dimension number K.

Specifically, we will introduce identifiable structure bias for
our low dimensional representation. Identifiable bias means
we only search our optimum dimension K in the space of
identifiable models.

2) Model: We will use linear non-Gaussian encoding model
for us primary experiments and theoretical analysis. Then post-
nonlinear encoding models will be considered.



TABLE I: Causal Dataset

Type Name Introduction website
Benchmark Causeme [54] time-series https://causeme.uv.es/
Benchmark JustCause [55] support IHDP, ACIC etc. https://justcause.readthedocs.io/en/latest/
Benchmark e-CARE [56] reasoning and explanation for NLP https://scir-sp.github.io
Dataset IHDP [49] home visits and IQ testing https://www.icpsr.umich.edu/web/HMCA/studies/9795
Dataset Twins [57] birth weight and mortality \
Dataset Jobs [58] real world data \
Dataset ACIC2019 conference challenge https://sites.google.com/view/acic2019datachallenge/home

TABLE II: Causal Packages

Motivation Toolbox Support Team Introduction

Causal Learning causal-learn
CMU, DMIR,
Gong Mingming team,
Shouhei Shimizu team

python version of Tetrad

Tetrad [59] CMU Java
CausalDiscoveryToolbox [60] FenTechSolutions python, DAG/Pair, dataset, independence, structure learning, metrics
gCastle Huawei Noah python, data generation and process, causal structure learning, metrics
tigramite Jakob Runge python, learning from time-series data

Causal Reasoning Ananke [61] [62] [63] Ilya Shpitser team python, support do-calculus
EconML [64] Microsoft python, Econometrics
dowhy [65] Microsoft python
causalml [66] Uber python, campaign target optimization, personalized engagement
CausalImpact Google R, time-series, adertisement and click
WhyNot John Miller python, simulator and environment
Causal-Curve [67] Kobrosly, R.W. python, continuous variable such as price, time and income
grf [68] grf-lab of Standford R
dosearch [69] Santtu Tikka R
causaleffect [70] Santtu Tikka R
dagitty [71] \ R, support adjustment formula

End-to-End causalnex QuantumBlack python, 0.11.0, structure learning, domain knowledge, estimation

V. RESULTS OBTAINED

A. Implementation of Shpitser’s ID algorithm

In order to estimate the causal effect among different dimen-
sions to calculate causal information to get optimum L∗, we
implemented the Shpitser’s complete identification algorithm.
We did this because we did not find correct open-source
codes (including causaleffect, Ananke, dowhy, dagitty [71])
to provide the complete identified mathematical expression
of Shpitser’s ID algorithm. The algorithm was implemented
based on python. The input is a causal diagram, and the output
is a mathematical expression using latex language.

B. The function of identification in causal effect estimation

From the identification result, we can train the pre-
diction model and compute causal effect following the
factorization results. However, we wondered what would
happen if we did not do identification but just predic-
tion. For example, the identification result of figure 1
is P (C|do(S)) =

∑
d P (d)P (S,C|d,B)∑
d P (d)P (S|d,B) . We choose C∗ =

argc maxP (c|do(S)) as prediction value. The pure Bayesian
prediction is E(C|S,D,B). The average prediction is E(C).
In the following, we use X1 denote dopamine, X2 denote
brain, T denote smoking, and Y denote lung cancer.

The experimental properties we are interested in about our
model and algorithm after identification is OOD generaliza-
tion under parametric interventions from correct identification
comparing with pure prediction. It can be measured in two
aspects: OOD unbiasness and variance. If the estimand is

D B

G

S C

E

Fig. 1: Example of four variables. D means dopamine; B
means senior brain activity (frontal lobe); G means unob-
served gene/physique; E means social environment not easy
to measure. S means smoking behaviour, and C means cancer.
For example, E → D may represent some life pressures, and
E → S may be unconscious mimic nature.

E(Yi(1) − Yi(0)), then we can use ATE and PEHE as
unbiasness and variance measurement respectively.

In our experiment, we use the linear model (same structure
with figure 1) as a real-world model to generate data and test
the out-of-distribution generalization ability. Each predictor of
our association layer model is linear regression or classifica-
tion model. To keep the consistency with X-learner, we also
use two models for treatment and control group separately.
We use random transformation and shifting of mechanisms as
parametric intervention to test the robustness of our frame-



Fig. 2: Experiment error for ATE estimation where X1 is discrete. Star is median value. Red line is average value. ’I’ means
inner mechanisms, and ’O’ means outer mechanisms. ’S’ means the parametric intervention is mechanism shifting, and ’T’
means the parametric intervention is random transformation of mechanism.

Fig. 3: Experiment error for ATE estimation where X1 is continuous. Star is median value. Red line is average value. ’I’ means
inner mechanisms, and ’O’ means outer mechanisms. ’S’ means the parametric intervention is mechanism shifting, and ’T’
means the parametric intervention is random transformation of mechanism.



Fig. 4: Experiment error for PEHE estimation where X1 is discrete. Star is median value. Red line is average value. ’I’ means
inner mechanisms, and ’O’ means outer mechanisms. ’S’ means the parametric intervention is mechanism shifting, and ’T’
means the parametric intervention is random transformation of mechanism.

Fig. 5: Experiment error for PEHE estimation where X1 is continuous. Star is median value. Red line is average value. ’I’
means inner mechanisms, and ’O’ means outer mechanisms. ’S’ means the parametric intervention is mechanism shifting, and
’T’ means the parametric intervention is random transformation of mechanism.



work. For every setting, we run 50 independent experiments
to evaluate the result where there are 1000 samples totally in
each experiment.

The train sample number is 800, and the train/valid splitting
is 640:160. The test sample number is 200. In algorithm 2
and 3, the sampling numbers of X1 and (Y, T ) are both
100. The dimension of every variable is 1. In optimization,
the max epoch is 100000, and we will stop if there is no
decrease of loss above 20 and 100 epochs for continuous and
discrete testing, respectively. The loss function is MSE loss
for regression and Cross Entropy loss for classification; the
learning rate is 0.001. When positivity is not satisfied or the
joint distribution is zero, we will resample data. The T are
discrete variables and X2 and Y are continuous variables. X1

can be continuous or discrete variable. We don’t use variational
method to fitting function of error variance, and use prior noted
in the paper directly due to convenience. All the experiment are
independent. Figure 6 shows some continuous data. In those
figures, left part is train data, and right part is testing data.
Yellow and purple means different treatment assignments. And
z-axis is value of Y .

Although nonlinear model is not used in our experiments,
it can still work if there are nonlinear predictors and environ-
ments.

Figure 2, 3, 4, and 5 show the experiment results. We should
notice that in-sample testing is not only IID testing due to
the missing counterfactual data, and our out-sample testing
is under those parametric interventions. In unbiasness testing,
estimations after identification are more unbiased than MR
[76] and INT [77] from ATE estimation result in both discrete
and continuous cases. Considering estimation variance, it got
better performance when outer mechanisms are changed.

VI. FUTURE PLAN

In next months, we will introduce causal information mea-
surement of low-dimensional representation based on causal
effect calculation for deciding which dimension should we
reduced to. And we will do both theoretical analysis and
empirical studies of our adaptive causal dimension reduction
algorithms.



Fig. 6: Some samples of generated data
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