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I. MOTIVATION

In the domain of machine learning, tabular data exhibits
heterogeneous scales, encompassing nominal, ordinal, interval,
and ratio types, which are discerned based on their grouping
structure. Effectively addressing and leveraging this hetero-
geneity pose crucial challenges for predictive tasks involving
tabular data. Numerous existing approaches have been devised
to tackle these challenges by incorporating feature embeddings
into downstream backbone models. Nevertheless, deep learn-
ing models often struggle to effectively handle this heterogene-
ity, contributing to their inability to surpass the performance
of tree-based models. In this study, we introduce a pioneer-
ing plug-in embedding module tailored for downstream deep
learning models. This module not only takes into account the
value assignment encoding but also considers the probability
associated with the given assignment. We employ the inverse
probability as the weight for the one-hot encoder applied to
nominal data and utilize the inverse occurrence probability as
the weight for the thermometer encoder employed with ordinal
data. As for continuous data, we adopt a learned Fourier
feature methodology based on prior research. Experimental
results demonstrate that our proposed approach enhances the
performance of the underlying backbone model.

II. NOTATIONS

We summarize the symbols we used in this report in table 1.
We let capital letter denote variables, and small letters denote
values. Similarly, we denote metrics by bold upper letters, and
denote vector by bold lower letters.

In this report, we employ a consistent notation convention
to facilitate clarity and comprehension. We utilize capital
letters to represent variables, while small letters are used
to denote specific values. Additionally, bold upper letters
are employed to denote various metrics, while bold lower
letters are utilized to denote vectors. This systematic symbol
representation aids in conveying the information and ensuring
consistency throughout the document.

III. RELATED WORKS

A. Heterogeneous Data Scale

In 1946, Stevens conducted a comprehensive classification
of scales of measurement, which included nominal, ordinal,
interval, and ratio scales [1]. The nominal scale represents a

Notation | Description

n number of instances in the data
T features of an instance

Y targets of an instance

dy number of features in the data
dy dimension of target in the data
[fil number of values of feature ¢
zy ith feature of kth instance

TABLE I: Notations

permutation group, wherein each object is associated with a
unique value for the feature. The ordinal scale, on the other
hand, is based on a partially ordered set where the comparison
of greater or lesser values is defined. Both the interval and
ratio scales belong to the general linear group, with the
distinction that the ratio scale implies the presence of a “’true”
zero point. These heterogeneous scales have proven valuable
for statisticians in uncovering meaningful insights from data.
However, certain statisticians argued in 1993 that the creative
approaches and models for data analysis should be constrained
by the scales of the data itself [2]. Stevens’s measurement
theory remains independent of the specific questions posed to
the data. Nonetheless, the crucial aspect lies in understanding
the data and formulating the pertinent questions that one seeks
to address.

B. Heterogeneous Feature Embedding

When dealing with tabular data, the features collected can
exhibit a combination of categorical (nominal, ordinal) and
numerical (interval, ratio) scales. In order to handle these
heterogeneous features, various embedding techniques have
been developed to map them into the real number field R or
the interval [0, 1]. Existing embedding algorithms for features
with heterogeneous scales can be broadly categorized into two
classes: unsupervised and supervised (target-aware) methods.

1) Unsupervised Feature Embedding: Unsupervised feature
embedding approaches do not rely on label information during
the embedding process. Instead, they typically utilize certain
priors or assumptions, such as orthogonality, to guide the
embedding process. These methods aim to discover inherent
patterns or structures within the data itself, without considering
the specific labels or target variable. By leveraging these
priors, unsupervised embedding techniques can effectively



capture the underlying characteristics of the features and
represent them in a transformed space.

Nominal. One-hot encoder is a widely used embedding
algorithm for categorical features. It represents each unique
value of a feature as a binary number, indicating whether the
corresponding value appeared or not. The resulting mapped
vector for a feature has a size equal to the number of unique
feature values.

Dummy encoding is similar to the one-hot encoder, but it
reduces the vector size by one (n—1) by designating one value
as the reference category and representing it with a zero vector.
The other values are then encoded using binary vectors. For
example, a feature with three values would be represented as
[0,0] for one value and [1,0] or [0,1] for the other two values.

Binary encoder maps the original feature values into a
binary representation using a fixed number of binary bits.
The number of bits required is determined by the formula
[logy(n)], where n is the number of unique feature values.

Frequency encoder, also known as Count encoder, maps
each feature value to its frequency within the dataset. This
encoding technique replaces the original value with its corre-
sponding frequency, effectively representing the value by its
occurrence count.

Simple encoder is similar to dummy encoding, but it re-
places the binary values 0 and 1 with continuous values.
Specifically, it substitutes 0 with f% and 1 with "7—:1 where n
represents the number of unique feature values. This encoding
approach retains the ordinal information of the feature values.

These various encoding algorithms provide different strate-
gies for representing categorical features in a numerical for-
mat, enabling machine learning models to effectively utilize
such features in their training process.

Ordinal. Ordinal encoder is used to map a feature with
ordinal scale into an integer value. It assigns a unique integer
to each distinct value of the feature, considering the order or
ranking among the values.

Rank-hot encoder, also known as thermometer encoder, is
similar to one-hot encoding. However, instead of having only
one value as hot (1) and the others as cold (0), it sets all values
up to and including the current rank as hot. This encoding
method captures the ordinal nature of the feature values.

Gray encoder, a type of binary encoder, ensures that ad-
jacent values in the encoded representation differ by only a
single bit. This helps in reducing errors or noise during the
encoding process.

Several orthogonal encoders are available for linear models.
Helmert contrast encoder compares each value of the feature
to the subsequent value. For example, the feature sequence [1,
2, 3, 4] would be mapped to [[1, -0.33, -0.33, -0.33], [O, 1,
-0.33, -0.33], [0, O, 1, -1]] using Helmert contrast encoding.

Orthogonal polynomial encoder utilizes linear, quadratic,
and cubic trends to fit the ordinal values within the same
interval. For example, the sequence [1, 2, 3, 4] would be
coded into [[-0.671, -0.224, 0.224, 0.671], [0.5, -0.5, -0.5, 0.5],
[-0.224, 0.671, -0.671, 0.224]] using orthogonal polynomial
encoding.

Backward difference encoder compares each value of the
feature with the mean of the previous values. This encoding
technique takes into account the relationship between the
current value and the preceding values in the sequence.

These orthogonal encoding methods provide ways to trans-
form categorical features with specific characteristics, such
as ordinality or linear trends, into numerical representations
suitable for linear models.

Continuous. The common practice is to use the continuous
value of a feature directly as input for the backbone model.
Another approach involves discretizing the feature values and
applying categorical encoders. One such approach is the Piece-
wise Linear (PLE) encoder, introduced by Gorishniy et al. [3].

The PLE encoder is inspired by the cumulative distribution
function of a value. It first discretizes the continuous values
of the feature and then applies the rank-hot encoder. Within
each bin, the PLE encoder replaces the value f(x) (which is
initially set to 1) with a linear transformation f(z) = li __l;“t’_ll ,
where b,_; and b, represent the lower and upper boundaries
of the bin, respectively.

By discretizing the feature values and applying the rank-hot
encoder with this modified transformation, the PLE encoder
captures the relative position or rank of the values within each
bin, enabling the model to learn and leverage this ordinal
information during training.

Others. Base-N encoder is an encoding method that maps
feature values into their base-N representation. In this en-
coding scheme, the base-N refers to the numerical base used
for the representation, where base-1 corresponds to the one-
hot encoder, base-2 corresponds to the binary encoder, and
base-N corresponds to the ordinal encoder, with N being the
number of unique values for the specific feature. This encoding
approach leverages the inherent ordinality of the feature values
by assigning them integer values based on their order or rank.

On the other hand, hashing encoder is a technique that maps
the original feature values into hash values. This encoding
method involves applying a hash function to transform the val-
ues into a new representation. However, finding an appropriate
hash function that yields good results for downstream models
can be a non-trivial task. The effectiveness of the hashing
encoder depends on the quality of the chosen hash function and
its compatibility with the specific downstream models being
used.

2) Supervised Embedding: Supervised embedding methods
have the potential to enhance model performance by leverag-
ing the supervised label information during the embedding
process. These techniques incorporate the target variable or
label into the embedding algorithm, allowing the model to
learn informative representations that are directly aligned with
the prediction task.

However, it is important to be cautious when applying
supervised embedding, as it can inadvertently introduce target
leakage. Target leakage occurs when the embedding process
unintentionally incorporates information from the target vari-
able that would not be available in a real-world prediction
scenario. This leakage can lead to inflated performance during




training but can severely degrade the model’s generalization
ability and performance on unseen data.

To mitigate target leakage and ensure reliable performance,
careful consideration should be given to the design and im-
plementation of supervised embedding methods. It is crucial
to ensure that the embedding process only utilizes infor-
mation that would be available at the time of prediction,
preventing any inadvertent incorporation of future or otherwise
unavailable information. Thorough validation and evaluation
on separate test sets can help detect and address any potential
target leakage issues, allowing for more robust and reliable
model performance.

Categorical feature The greedy target statistic estimates the
expected value of the target variable, denoted as E(y|x = xx),
based on the training dataset. To mitigate potential noise or
variability in the estimates, it is common to apply smoothing
using parameters a and p. The smoothed estimate can be
calculated using the following formula:
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Ordered target statistic creates a virtual ‘time’, and use its all
available history to calculate the target statistic.

Continuous feature

The one-blob encoding method, proposed by Miiller et al.
[4], assumes that the feature values follow a Gaussian or
Laplace distribution. Each value is represented as a “blob”
with a probability distribution centered at that value. The
adjacent bins or intervals around the value correspond to
the probabilities associated with that value. This encoding
approach captures the uncertainty or variability in the feature
values by modeling their distributions.

On the other hand, the periodic encoder, introduced by
Gorishniy et al. [3], maps a feature into its Fourier forms. The
encoding is represented as a vector f(x) = [sin(v), cos(v)],
where v = [27c;x, .., 2c,x]. The frequency vector ¢; can be
learned from the data. This encoding technique is particularly
useful for handling periodic or cyclical features, where the
relationship between values wraps around in a circular fashion
(e.g., time of day or day of the week). By representing the
feature values in their Fourier forms, the periodic encoder
captures the underlying cyclical patterns and relationships
within the data.

IV. DIMENSION REDUCTION OF FEATURES

In order to deal with high-dimensional covariates, some
dimensionality reduction approaches may be helpful.

Current dimensionality reduction research can be divided
into three classes according to the reduction target. The first
class is to determine the dimension based on information
loss. For example, [5] minimize regression mean squared

error (MSE) from cross-validation for a linear model with a
kernel. [6] propose a Lagrange loss with a binary mask 7
for variational autoencoders (VAE) and prove its convergent
dimension is a local minimum. However, the hidden distri-
bution is usually in Gaussian space, which is often regarded
as an “uninteresting” signal noise due to the central limit
theorem. The second class evaluates the non-Gaussianity of
latent space. For example, [7] assign a stability score to the
principal component and regard the change point with the
smallest p-value as an indicator. Non-Gaussian component
analysis (NGCA) [8]-[10] assumes Gaussian noise is inde-
pendent of the non-Gaussian subspace, and they discard the
Gaussian component to determine the signal space. However,
the algorithm is either exponential related to the dimension of
the non-Gaussian subspace due to the error of accumulation
[10] or the polynomial time is unacceptable. Therefore, it
cannot be applied directly to general high-dimensional data.
The third class is the end-to-end approach for a specified
task. For example, [11] and [12] search for the most dis-
criminative subspace for clustering. Recently, [13] propose
a general approach based on probability density function
(PDF) estimation without assumption about data structure,
although the choice of hidden dimension is empirical. [14]
use normalized maximum likelihood to determine the principal
component cardinality. Table III illustrates the assumptions of
representative dimensionality reduction methods.

PCA [15] [16] is a widely used linear dimensionality reduc-
tion technique. It uses orthogonal transformation to obtain the
uncorrelated principal components. Autoencoder [17] [18], on
the other hand, is a non-linear dimensionality reduction tech-
nique that typically uses neural networks and gradient-based
optimization to learn the parameters for efficient computation.
In autoencoders, the reconstruction error is an important part
of the loss function.

V. METHODOLOGY

In order to address the challenge of handling heterogeneous
features, a transformation of these features into a unified space
suitable for the backbone model is necessary.

Our proposed methodology involves assigning lower val-
ues to features with higher frequencies after the embedding
process, while assigning higher values to features with lower
frequencies. This approach is based on the rationale that neural
units may experience fatigue when exposed to high-frequency
values, resulting in reduced input. Figure 1 provides a visual
representation of our proposed inverse probability weighting
encoder.

A key characteristic shared by heterogeneous features is
their occurrence as measurements. Regardless of the feature
type (nominal, ordinal, interval, or ratio), these occurrences
hold significant meaning. Therefore, we choose to transform
each feature into an occurrence space, where each dimension
corresponds to a feature value and each point represents a
distinct instance. The values within this space reflect the
observation probabilities, including conditional probabilities,
associated with each instance, ranging from O to 1.



Feature

Feature Scale | Encoder Example
Unsupervised | Nominal One-hot [1,2,31—[[1,0,01,[0,1,0],[0,0,1]]
Binary [1,2,3]1—[[0,01,[0,11,[1,01]
Dummpy [1,2,3]—1[1,0],[0,11,[0,0]]
Count (1,1,3]=[[2L.[2],[1]]
Simple /
Ordinal Ordinal [1,2,3]—[1,2,3]
Rank-hot [1,2,3]—[[1,0,01,[1,1,01,[1,1,1]]
Gray [1,2,3]—[[0,01,[0,11,[1,11]
Helmert contrast /
Orthogonal polynominal /
Backward difference /
Base-N /
Continuous Bins+Categorical /
Piece-wise linear (PLE) [0.11,0.22,0.31]—[[0.1,0,01,[1,0.2,0],[1,1,0.1]]
Other Hashing /
Supervised Categorical Greedy TS (target statistic) /
Holdout TS (target statistic) | /
Ordered TS (target statistic) | /
Continuous One-blob /
Periodic /
TABLE II: Heterogeneous Feature Encoders
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Fig. 1: Proposed Embedding Module. The Embedding Module proposed in this study incorporates the information of occurrence
probabilities, as indicated by the red text. The module handles three types of features: continuous (X¢), ordinal (Xp), and

nominal (X ).



TABLE III: Dimensionality reduction assumptions. G: Gaus-
sian; I: independent; nG: non-Gaussian; _L: orthogonal; —:
generate; ANN: additive normal noise; DAG: directed acyclic
graph.

Method Mapping p(z) p(x)
PCA Linear 1G 1G
ICA Linear InG InG+G
t-SNE Nonlinear | Local continuty | Local continuty
BVAE Nonlinear IG with 3 \
NGCA Linear G1lnG ANN
LinGAM Linear G—nG ANN with DAG

However, a significant challenge arises due to the combina-
torial nature of both the space dimensions and the probabili-
ties. To overcome this challenge, we posit that the occurrence
space can be separated based on features. Consequently, we
derive a set of d, subspaces denoted as S1,..5d,. Each
subspace encapsulates dimensions represented by |f1],..|fn]-
As a result, the dimensionality of the occurrence space is effec-
tively reduced to >, | f;|. To approximate the combinatorial
observation probabilities, we utilize zero-order conditional
probabilities p(«}),...p(z5 ).

The subsequent aspect involves the integration of infor-
mation from the occurrence space and the original value
representations. Nominal features are encoded using a one-hot
encoder, facilitating the capture of occurrence probabilities.
For ordinal features, we employ a rank-hot encoder, as the
occurrence of higher rank values implies the occurrence of
lower rank values. Continuous features are represented using
a Fourier-based form, enabling the modeling of occurrence
patterns across different frequencies.

V1. EXPERIMENT
A. Task 1: Predicting Outcome in Randomized Trial

Predicting individual outcomes in randomized trials is a
fundamental objective in causal inference. In datasets de-
rived from randomized trials, instances are characterized by
three classes of features: treatment, pre-treatment, and post-
treatment. The values of the treatment feature are not de-
termined by the data collector but are instead assigned by a
random generator controlled by the researchers. Subsequently,
the treatment is implemented according to the assigned value
by the trial executor. The pre-treatment features are measured
prior to the assignment of the treatment value, while the
post-treatment features are measured subsequent to the treat-
ment assignment. Among the post-treatment features, three
categories can be distinguished: main outcome, secondary
outcome, and additional post-treatment variables. However,
in this context, the term “outcome” is often used to refer
specifically to the post-treatment variable of primary interest.

1) Dataset: We have curated a comprehensive
collection of randomized trial datasets and
made them publicly accessible on the website:

https://github.com/herdonyan/RandomizedTrialDataset.
The datasets encompass a wide range of randomized
trials, representing a valuable resource for researchers in

various fields. Despite the significant cost associated with
designing and executing randomized trials, there is a growing
trend among funding agencies and journals to mandate
the availability of these datasets, while ensuring privacy
protection measures are in place. This initiative aims to
promote transparency, reproducibility, and collaboration in
the scientific community by facilitating access to randomized
trial data and fostering further research advancements.

The AKIAlert dataset is a valuable resource derived from a
randomized trial that recorded electronic health record (EHR)
data of patients. This dataset follows a double-blinded, mul-
ticenter, and parallel design. The primary focus of the trial
is to evaluate the impact of an acute kidney injury (AKI)
alert provided by the electronic system compared to usual care
without an alert. The participants were identified electronically
and randomized using a simple randomization approach with
allocation concealment.

The dataset comprises a total of 6,030 adult inpatients
with AKI, which is defined based on the Kidney Disease:
Improving Global Outcomes (KDIGO) creatinine criteria. It
includes 49 pre-treatment variables, 1 main outcome variable,
and additional post-treatment variables. Among the 49 pre-
treatment variables, there are 9 nominal features, 19 ordinal
features, 3 interval features, and 20 ratio features.

Within the cohort of 6,030 patients, 948 individuals expe-
rienced AKI progression within a 14-day period, while 5,082
patients did not exhibit such progression. The dataset provides
a valuable resource for conducting analyses and exploring the
impact of the AKI alert on various post-treatment variables,
aiding researchers in gaining insights into the management and
outcomes of AKI in the context of electronic health records.

The primary task of interest in the AKIAlert dataset is to
predict the occurrence of AKI progression within 14 days of
randomization based on the available pre-treatment variables.
This task can be formulated as a classical binary classification
problem, where the objective is to distinguish between patients
who will experience AKI progression within the specified
timeframe and those who will not.

By leveraging the 49 pre-treatment variables present in
the dataset, researchers can develop predictive models and
algorithms to identify patterns and relationships that may
contribute to the prediction of AKI progression. These vari-
ables, including the 9 nominal features, 19 ordinal features,
3 interval features, and 20 ratio features, offer a rich set of
information to analyze and extract relevant predictors for the
binary classification task.

The successful development of a predictive model for AKI
progression within 14 days in randomized trials can have
significant clinical implications, enabling early identification
and intervention for alert-benefited patients while avoid the for
alert-harmful patients. Moreover, it can contribute to advanc-
ing the field of acute kidney injury research and improving
patient outcomes in healthcare settings.

In order to address the challenge posed by label imbal-
ance, we employ the average precision score (PR-AUC) as
the performance metric for evaluating the models. The PR-



TABLE IV: Heterogeneous datasets for outcome prediction

Dataset Instance | Outcome

Treatment

Safety and Preliminary Efficacy of Intranasal | 16
Insulin for Cognitive Impairment in Parkinson
Disease and Multiple System Atrophy

Parkinson disease

Intranasal insulin

https://physionet.org/content/inipdmsa/1.0/

Tai Chi, Physiological Complexity, and Healthy | 60 Gait and EMG data Tai Chi
Aging - Gait

https://physionet.org/content/taichidb/1.0.2/
ECG Effects of Dofetilide, Moxifloxacin, 22 ECG Dofetilide, Moxifloxacin,
Dofetilide+Mexiletine, Dofetilide+Lidocaine and Dofetilide+Mexiletine,
Moxifloxacin+Diltiazem Dofetilide+Lidocaine and

Moxifloxacin+Diltiazem

https://physionet.org/content/ecgdmmld/1.0.0/

ECG Effects of Ranolazine, Dofetilide, Vera- 22
pamil, and Quinidine

ECG

Ranolazine, Dofetilide, Verapamil,
and Quinidine

https://physionet.org/content/ecgrdvq/1.0.0/

CAST RR Interval Sub-Study Database 734

Cardiac arrhythmia suppression

Encainide, flecainide, moricizine (an-
tiarrhythmic drugs) or a placebo

https://physionet.org/content/crisdb/1.0.0/

Randomized trial of AKI alerts in hospitalized | 6030

patients

Acute Kidney Injury

Electronic AKI alert versus usual
care

https://datadryad.org/stash/dataset/doi: 10.5061%2Fdryad.59zw3r27n

Telerehabilitation

vivors (TERECO) - Randomized controlled trial

Telerehabilitation program for COVID-19 sur- | 120

Exercise capacity, lower-limb muscle strength
(LMS), pulmonary function, health-related qual-
ity of life (HRQOL), and dyspnoea

program  for
COVID-19 survivors

https://datadryad.org/stash/dataset/doi: 10.5061%2Fdryad.59zw3r27n

Bicycling comfort video experiment 15289 Bicycle rating Video Type
https://datadryad.org/stash/dataset/doi: 10.25338%2FB8KG77

Megafon uplift competition 1.5 User conversion Exposure
million

https://ods.ai/tracks/df2 1-megafon/competitions/megafon-df21-comp/data

Infant Health and Development Program 1090

Cognitive development,
Health status

Behavior problems, | Home visits, attendance at a special

child development center

https://www.icpsr.umich.edu/web/HMCA/studies/9795

National Supported Work Evaluation Study 6600

effects of the Supported Work Program

Offered a job in supported work

https://www.icpsr.umich.edu/web/ICPSR/studies/7865

CPAP Pressure and Flow Data from a Local Trial | 30
of 30 Adults at the University of Canterbury

Breathing

Continuous positive airway pressure

https://physionet.org/content/cpap-data-canterbury/1.0.1/

AUC, a commonly utilized measure in binary classification
tasks, provides a comprehensive evaluation of the model’s
effectiveness in scenarios where there is a significant disparity
in the class distribution.

Unlike conventional evaluation metrics such as accuracy or
F1-score, the PR-AUC takes into account both precision and
recall, which are particularly relevant in imbalanced datasets.
Precision quantifies the proportion of correctly predicted pos-
itive instances out of all instances classified as positive, while
recall captures the proportion of correctly predicted positive
instances out of the total number of actual positive instances.

By calculating the area under the precision-recall curve, the
PR-AUC delivers a comprehensive assessment of the model’s
performance across a range of classification thresholds. This

approach proves advantageous when dealing with imbalanced
datasets, as it focuses on the performance of the minority class
(AKI progress) and is less influenced by the dominance of the
majority class (non-AKI progress).

Employing the PR-AUC as the evaluation metric in the
assessment of models on the AKIAlert dataset ensures a robust
estimation of their predictive capabilities, mitigating the effects
of label imbalance. Higher PR-AUC scores signify superior
performance in accurately identifying instances of AKI pro-
gression, thereby contributing to enhanced patient manage-
ment and facilitating informed clinical decision-making.

2) Implementation details: To address the potential im-
pact of randomness in dataset splitting, all experiments were
conducted five times using different random splits of the



dataset. This approach helps mitigate the influence of splitting
randomness and provides a more robust evaluation of the
models’ performance.

Four different models were evaluated on the dataset: Cat-
BoostTree, HetMLP (our proposed model), Vanilla MLP, and
stochastic prediction. Each model was trained and tested
using the randomized dataset splits, ensuring a comprehensive
assessment of their respective performance.

By employing multiple executions of the experiments and
evaluating different models, we aim to obtain reliable and
statistically significant results. This approach allows us to
analyze the performance of each model across multiple it-
erations, capturing variations in their predictive capabilities
and facilitating a more comprehensive understanding of their
strengths and weaknesses.

The utilization of this experimental methodology enhances
the reliability and validity of our findings, enabling us to draw
robust conclusions regarding the comparative performance of
the evaluated models on the given dataset.

For the CatBoostTree model, which is considered state-of-
the-art (SOTA) for our experiment, all nominal and ordinal
features were categorized as categorical features. The default
parameters of the CatBoostClassifier were employed during
the training process.

The model was trained for a total of 500 iterations, with
a learning rate set to 0.03. The depth of the trees used in
the model was set to 6, while the l» regularization applied to
the leaves had a value of 3.0. The loss function utilized for
training was the logarithmic loss.

During the tree construction process, a maximum of 4
combinations of categorical features were considered, pro-
viding flexibility in capturing potential interactions between
these features. Additionally, the minimum number of training
samples required in each leaf node was set to 1, ensuring the
model’s adaptability to various sample sizes.

To control the complexity of the resulting tree, the max-
imum number of leaf nodes was limited to 31. The cosine
function was employed as the score function to guide the
selection of the next split in the tree construction process,
contributing to an effective and efficient model.

Furthermore, the scale position weight was utilized to
address any potential data imbalance issues, ensuring that
the model’s performance was not skewed by uneven class
distributions.

By specifying these parameters and employing the Cat-
BoostTree model, we aimed to leverage its advanced capabili-
ties for handling categorical features and effectively modeling
the dataset under consideration.

The VilliaMLP model utilized a multi-layer perceptron
(MLP) architecture as its backbone. The MLP consisted of
three layers, with hidden units of 1024, 512, and 256, respec-
tively. Dropout regularization was applied with a rate of 0.1
to prevent overfitting.

The learning rate for training the model was set to 0.001,
promoting efficient optimization during the learning process.
Weight decay regularization with a coefficient of 0.000001

was incorporated to prevent excessive model complexity and
enhance generalization.

To assess the model’s performance and prevent overfitting, a
train/test splitting ratio of 8:2 was employed, with 80% of the
data allocated for training and 20% for testing. Additionally,
a train/validation splitting ratio of 9:1 was used to further
evaluate the model’s performance during training. Validation
was performed at each epoch, and an early stop policy was
implemented to select the best-performing model based on the
validation dataset. The early stop epoch was set to 20.

For handling the different types of features, specific en-
coders were employed. Nominal features were encoded using
one-hot encoding, while ordinal features were encoded using
an ordinal encoder. Continuous features were encoded using
a learnable Fourier encoder, allowing the model to effectively
capture and represent the underlying patterns in the data. The
maximum frequency number for the Fourier encoder was set
to 200.

To address label imbalance, the loss function employed a
weighting scheme based on the labels. This approach helped
mitigate any potential degradation in performance resulting
from imbalanced class distributions, ensuring fair and accurate
model evaluation.

By leveraging the VilliaMLP model with these configura-
tions and techniques, we aimed to effectively leverage the
MLP architecture and appropriate feature encoders to achieve
accurate predictions while mitigating common challenges such
as overfitting and label imbalance.

In contrast to VilliaMLP, HetMLP shares a similar archi-
tecture and configuration, with the exception of the feature
encoders used. In HetMLP, we adopted a different approach
by assigning weights to the transformed features based on their
inverse probabilities.

Specifically, the weight assigned to each transformed feature
was determined by its frequency in the dataset. If a feature
appeared frequently, it was assigned a smaller weight, whereas
features with lower frequencies were given larger weights.
This weighting scheme aimed to address the heterogeneity in
feature frequencies and ensure that each feature contributed
appropriately to the overall model representation.

By incorporating these weighted transformed features,
HetMLP aimed to capture the varying importance and impact
of different features based on their frequencies. This approach
allowed the model to effectively handle the heterogeneous na-
ture of the dataset, providing a more nuanced and informative
representation of the input data.

Overall, HetMLP and VilliaMLP shared similar architec-
tural configurations, but their respective feature encoding
strategies differed. HetMLP leveraged the inverse probability
weighting of transformed features to effectively address the
heterogeneity of feature frequencies and enhance the model’s
predictive performance.

Stochastic prediction was employed as a baseline method
to compare against the performance of the proposed models.
In this approach, the probability p(y) was utilized to make



Algorithm PR-AUC

HetMLP .2117+.0009
VilliaMLP .2087+.0164
Baseline (Stochastic) | .1568+.0089

TABLE V: PR-AUC of different models

predictions regarding whether a patient would experience acute
kidney progress in the future.

By employing stochastic prediction, we aimed to establish
a reference point for evaluating the effectiveness of the other
models. The baseline method provided a benchmark against
which the performance improvements of the CatBoostTree,
VilliaMLP, and HetMLP models could be assessed.

Through this comparative analysis, we sought to highlight
the advancements and enhancements achieved by the pro-
posed models over the stochastic prediction baseline. The
evaluation of the models against this baseline allowed for a
comprehensive understanding of their predictive capabilities
and demonstrated the potential improvements that can be
achieved in predicting acute kidney progress within the given
dataset.

B. Result Analysis

In order to assess the effectiveness of our algorithm, we
compared its performance with that of VilliaMLP using the av-
erage precision score (PR-AUC) metric. The PR-AUC metric
was chosen to account for the label imbalance in the dataset.

Upon evaluating the results, it can be observed that our
algorithm outperformed VilliaMLP in terms of PR-AUC. The
higher PR-AUC score achieved by our algorithm indicates its
superior ability to accurately predict the occurrence of acute
kidney progress within the specified timeframe.

The comparison with VilliaMLP serves as empirical evi-
dence supporting the effectiveness and improved performance
of our algorithm in addressing the given task. The results
demonstrate the potential of our algorithm as a valuable
approach for predicting acute kidney progress in randomized
trial, surpassing the performance of the previously established
VilliaMLP model.

VII. FUTURE PLAN

In tabular data, there are not only the four scales datatype.
Other data is also useful, such as text, feature names, questions
of survey. In future, we plan to combine the API of big model
to deal with the heterogeneity outside the Steven’s scales
theory.

Another challenge is time-series data, most algorithms and
models addressing on data heterogeneity are often assume in-
dependently identified distribution. However, time-series data
is also very important in machine learning. In future, we will
extend our algorithms to hetergeneous time-series data.
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